G-protein-coupled receptors (GPCRs), including 'orphan' GPCRs whose natural ligands are unknown, comprise the largest membrane receptor superfamily and are the most commonly used therapeutic targets. GPCR genetic loci harbour numerous variants, such as DNA insertions or deletions and single nucleotide polymorphisms that alter GPCR expression and function, thereby contributing to inter-individual differences in disease susceptibility/progression and drug responses. In this article, the authors review examples of GPCR genetic variants that influence transcription, translation, receptor folding and expression on cell surface (by affecting receptor trafficking, dimerisation, desensitisation/downregulation), or perturb receptor function (by altering ligand binding, G-protein coupling and receptor constitutive activity). In spite of such effects, assessment for genetic variants is not currently applied to the drug development and approval process or in the clinical use of GPCR drugs. Further insights will, the authors believe, alter drug discovery/development, therapeutics and likely provide new GPCR drug targets.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1517/14728222.9.6.1247 | DOI Listing |
Elife
January 2025
Calcium Signaling Group, Research Department, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, Doha, Qatar.
The steroid hormone progesterone (P4) regulates multiple aspects of reproductive and metabolic physiology. Classical P4 signaling operates through nuclear receptors that regulate transcription. In addition, P4 signals through membrane P4 receptors (mPRs) in a rapid nongenomic modality.
View Article and Find Full Text PDFFront Immunol
January 2025
Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States.
Epidemiological evidence suggests that post-menopausal women are more susceptible to HIV infection following sexual intercourse than are younger cohorts for reasons that remain unclear. Here, we evaluated how menopause-associated changes in CD4 T cell numbers and subsets as well as HIV coreceptor expression, particularly CCR5, in the endometrium (EM), endocervix (CX), and ectocervix (ECX) may alter HIV infection susceptibility. Using a tissue-specific mixed cell infection model, we demonstrate that while no changes in CD14 macrophage infection susceptibility were observed, CD4 T cell HIV-1 infection frequency increases following menopause in the EM, but not CX nor ECX.
View Article and Find Full Text PDFJ Neurochem
January 2025
School of Life Science, Nanchang University, Nanchang, China.
Activation of the brain-penetrant beta3-adrenergic receptor (Adrb3) is implicated in the treatment of depressive disorders. Enhancing GABAergic inputs from interneurons onto pyramidal cells of prefrontal cortex (PFC) represents a strategy for antidepressant therapies. Here, we probed the effects of the activation of Adrb3 on GABAergic transmission onto pyramidal neurons in the PFC using in vitro electrophysiology.
View Article and Find Full Text PDFJ Neurochem
January 2025
Molecular Horizons, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, New South Wales, Australia.
GABA receptor (GABAR) activation is known to alleviate pain by reducing neuronal excitability, primarily through inhibition of high voltage-activated (HVA) calcium (Ca2.2) channels and potentiating G protein-coupled inwardly rectifying potassium (GIRK) channels. Although the analgesic properties of small molecules and peptides have been primarily tested on isolated murine dorsal root ganglion (DRG) neurons, emerging strategies to develop, study, and characterise human pluripotent stem cell (hPSC)-derived sensory neurons present a promising alternative.
View Article and Find Full Text PDFAndrology
January 2025
Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York, USA.
The neuroendocrine system that comprises the glycoprotein hormones (GpHs) and their receptors is essential for reproduction and metabolism. Each GpH hormone is an αβ heterodimer of cystine-knot proteins and its cognate receptor is a G-protein coupled receptor (GPCR) distinguished by a large leucine-rich-repeat (LRR) extracellular domain that binds the hormone and a class A GPCR transmembrane domain that signals through an associating heterotrimeric G protein. Hence, the receptors are called LRR-containing GPCRs-LGRs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!