The enzyme beta-xylosidase from Trichoderma reesei, a member of glycosil hydrolase family 3 (GH3), is a glycoside hydrolase which acts at the glycosidic linkages of 1,4-beta-xylooligosaccharides and that also exhibits alpha-l-arabinofuranosidase activity on 4-nitrophenyl alpha-l-arabinofuranoside. In this work, we show that the enzyme forms monomers in solution and derive the low-resolution molecular envelope of the beta-xylosidase from small-angle X-ray scattering (SAXS) data using the ab initio simulated annealing algorithm. The radius of gyration and the maximum dimension of the beta-xylosidase are 30.3 +/- 0.2 and 90 +/- 5 A, respectively. In contrast to the fold of the only two structurally characterized members of GH3, the barley beta-d-glucan exohydrolase and beta-hexosaminidase from Vibrio cholerae, which have respectively two or one distinct domains, the shape of the beta-xylosidase indicates the presence of three distinct structural modules. Domain recognition algorithms were used to show that the C-terminal part of the amino acid sequence of the protein forms the third domain. Circular dichroism spectroscopy and secondary structure prediction programs demonstrate that this additional domain adopts a predominantly beta conformation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/bi050826j | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!