The reaction of DNA with certain bis-electrophiles such as chlorooxirane and chloroacetaldehyde produces etheno adducts. These lesions are highly miscoding, and some of the chemical agents that produce them have been shown to be carcinogenic in laboratory animals and in humans. An intermediate in the formation of 1,N2-ethenoguanine is 6-hydroxy-3,5,6,7-tetrahydro-9H-imidazo[1,2-a]purin-9-one (6-hydroxyethanoguanine), which undergoes conversion to the etheno adduct. The chemical properties and miscoding potential of the hydroxyethano adduct have not been previously studied. A synthesis of the hydroxyethano-adducted nucleoside was developed, and it was site specifically incorporated into oligonucleotides. This adduct had a half-life of between 24 and 48 h at neutral pH and 25 degrees C at the nucleoside and oligonucleotide levels. The miscoding potential of the hydroxyethano adduct was examined by primer extension reactions with the DNA polymerases Dpo4 and pol T7-, and the results were compared to the corresponding etheno-adducted oligonucleotide. Dpo4 preferentially incorporated dATP opposite the hydroxyethano adduct and dGTP opposite the etheno adduct; pol T7- preferentially incorporated dATP opposite the etheno adduct while dGTP and dATP were incorporated opposite the hydroxyethano adduct with nearly equal catalytic efficiencies. Collectively, these results indicate that the hydroxyethano adduct has a sufficient lifetime and miscoding properties to contribute to the mutagenic spectrum of chlorooxirane and related genotoxic species.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3135970PMC
http://dx.doi.org/10.1021/tx050141kDOI Listing

Publication Analysis

Top Keywords

hydroxyethano adduct
20
etheno adduct
12
adduct
9
intermediate formation
8
miscoding potential
8
potential hydroxyethano
8
pol t7-
8
preferentially incorporated
8
incorporated datp
8
datp opposite
8

Similar Publications

The reaction of DNA with certain bis-electrophiles such as chlorooxirane and chloroacetaldehyde produces etheno adducts. These lesions are highly miscoding, and some of the chemical agents that produce them have been shown to be carcinogenic in laboratory animals and in humans. An intermediate in the formation of 1,N2-ethenoguanine is 6-hydroxy-3,5,6,7-tetrahydro-9H-imidazo[1,2-a]purin-9-one (6-hydroxyethanoguanine), which undergoes conversion to the etheno adduct.

View Article and Find Full Text PDF

Exocyclic adducts of DNA bases, such as etheno- and hydroxyalkano- ones, are generated by a variety of bifunctional agents, including endogenously formed products of lipid peroxidation. In this work we selectively modified cytosines in the 5'-d(TTT TTT CTT TTT CTT TTT CTT TTT T)-3' oligonucleotide using: chloroacetaldehyde to obtain 3,N(4)-alpha-hydroxyethano- (HEC) and 3,N(4)-etheno- (epsilonC), acrolein to obtain 3,N(4)-alpha-hydroxypropano- (HPC) and crotonaldehyde to obtain 3,N(4)-alpha-hydroxy-gamma-methylpropano- (mHPC) adducts of cytosine. The studied adducts are alkali-labile which results in oligonucleotide strain breaks at the sites of modification upon strong base treatment.

View Article and Find Full Text PDF

Structural characterization of diastereoisomeric ethano adducts derived from the reaction of 2'-deoxyguanosine with trans,trans-2,4-decadienal.

Chem Res Toxicol

May 2004

Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, CEP 05508-900, Sao Paulo, Brazil.

Background levels of exocyclic DNA adducts have been detected in rodent and human tissues. Several studies have focused on bifunctional electrophiles generated from lipid peroxidation as one of the endogenous sources of these lesions. We have previously shown that the reaction of 2'-deoxyguanosine (dGuo) with trans,trans-2,4-decadienal (DDE), a highly cytotoxic aldehyde generated as a product of lipid peroxidation in cell membranes, results in the formation of a number of different base derivatives.

View Article and Find Full Text PDF

Chloroethylene oxide and chloroacetaldehyde, reactive intermediates derived from vinyl chloride, and the epoxy-hydroxy-alkanals, produced endogenously in the metabolism of polyunsaturated fatty acids, react with nucleic acid bases in DNA to form exocyclic etheno derivatives of 2'-deoxyadenosine, 2'-deoxyguanosine, and 2'-deoxycytidine. This paper describes an efficient method for the synthesis of the exocyclic 1,N(2)-etheno adduct of 2'-deoxyguanosine and its incorporation into DNA oligomers using automated synthesis techniques. The synthesis was initiated by a high-yield alkylation of N(2)-protected 2'-deoxyguanosine at the 1-position with 1,2-diacetoxy-3-bromopropane.

View Article and Find Full Text PDF

Synthesis of nucleosides and oligonucleotides containing adducts of acrolein and vinyl chloride.

Chem Res Toxicol

May 2000

Department of Chemistry and Center in Molecular Toxicology, Vanderbilt University, Nashville, Tennessee 37235, USA.

Vinyl chloride and acrolein are important industrial chemicals. Both form DNA adducts, vinyl chloride after enzymatic oxidation to chlorooxirane and acrolein by direct reaction. Reaction at the N(2) position of guanine is a major pathway.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!