There are a variety of bacterial defense strategies to survive in a hostile environment. Generation of extracellular polysaccharides has proved to be a simple but effective strategy against the host's innate immune system. A comparative genomics approach led us to identify a new protein family termed Stealth, most likely involved in the synthesis of extracellular polysaccharides. This protein family is characterized by a series of domains conserved across phylogeny from bacteria to eukaryotes. In bacteria, Stealth (previously characterized as SacB, XcbA, or WefC) is encoded by subsets of strains mainly colonizing multicellular organisms, with evidence for a protective effect against the host innate immune defense. More specifically, integrating all the available information about Stealth proteins in bacteria, we propose that Stealth is a D-hexose-1-phosphoryl transferase involved in the synthesis of polysaccharides. In the animal kingdom, Stealth is strongly conserved across evolution from social amoebas to simple and complex multicellular organisms, such as Dictyostelium discoideum, hydra, and human. Based on the occurrence of Stealth in most Eukaryotes and a subset of Prokaryotes together with its potential role in extracellular polysaccharide synthesis, we propose that metazoan Stealth functions to regulate the innate immune system. Moreover, there is good reason to speculate that the acquisition and spread of Stealth could be responsible for future epidemic outbreaks of infectious diseases caused by a large variety of eubacterial pathogens. Our in silico identification of a homologous protein in the human host will help to elucidate the causes of Stealth-dependent virulence. At a more basic level, the characterization of the molecular and cellular function of Stealth proteins may shed light on fundamental mechanisms of innate immune defense against microbial invasion.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1285062 | PMC |
http://dx.doi.org/10.1371/journal.pcbi.0010063 | DOI Listing |
Eur Heart J
January 2025
School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 2199 Lishui Rd, Nanshan, Shenzhen, Guangdong Province 518055, China.
Background And Aims: Lackluster results from recently completed gene therapy clinical trials of VEGF-A delivered by viral vectors have heightened the need to develop alternative delivery strategies. This study aims to demonstrate the pre-clinical efficacy and safety of extracellular vesicles (EVs) loaded with VEGF-A mRNA for the treatment of ischaemic vascular disease.
Methods: After encapsulation of full-length VEGF-A mRNA into fibroblast-derived EVs via cellular nanoporation (CNP), collected VEGF-A EVs were delivered into mouse models of ischaemic injury.
The Aim Of The Study: To study the expression of NOD receptors of immunotropic periodontal tissue cells in patients with aggressive periodontitis before and after complex treatment.
Materials And Methods: 15 patients aged 22 to 36 years with aggressive periodontitis were examined before and 21 days after the start of complex treatment. 15 patients with fibroids of the oral mucosa without signs of inflammation served as controls.
Exp Biol Med (Maywood)
January 2025
West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra, Ghana.
Malaria causes significant morbidity and mortality worldwide, disproportionately impacting sub-Saharan Africa. Disease phenotypes associated with infection can vary widely, from asymptomatic to life-threatening. To date, prevention efforts, particularly those related to vaccine development, have been hindered by an incomplete understanding of which factors impact host immune responses resulting in these divergent outcomes.
View Article and Find Full Text PDFJ Drug Deliv Sci Technol
February 2025
Department of Chemical Engineering, University of Rhode Island, Kingston, RI 02881 USA.
Macrophages are an integral part of the innate immune system and act as a first line of defense to pathogens; however, macrophages can be reservoirs for pathogens to hide and replicate. Tuberculosis, influenza virus, and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are common diseases whose pathogens are uptaken into macrophages. Current treatments for diseases such as these are limited by the therapeutic delivery method, which typically involves systemic delivery in large, frequent doses.
View Article and Find Full Text PDFFront Immunol
January 2025
Adoram Therapeutics, Geneva, Switzerland.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!