Phagocytosis and killing of Streptococcus pneumoniae was compared in blood-derived wild-type (WT) and Toll-like receptor 2 (TLR2)-deficient (TLR2-/-) polymorphonuclear leukocytes (PMN). Phagocytosis of green fluorescent protein-transformed pneumococci was delayed in TLR2-/- PMN. These cells exhibited also a lower oxidative bactericidal activity against S. pneumoniae than WT PMN, suggesting that TLR2 modulates bacterial clearance in PMN.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1307087PMC
http://dx.doi.org/10.1128/IAI.73.12.8397-8401.2005DOI Listing

Publication Analysis

Top Keywords

toll-like receptor
8
receptor deficiency
4
deficiency delays
4
delays pneumococcal
4
pneumococcal phagocytosis
4
phagocytosis impairs
4
impairs oxidative
4
oxidative killing
4
killing granulocytes
4
granulocytes phagocytosis
4

Similar Publications

Age-related cataracts (ARCs) are associated with increased oxidative stress and cellular senescence. Our objective is to investigate the function of Sirtuin 1 (SIRT1) within ARCs. In ARCs tissues and HO-treated lens epithelial cells (LECs), the expression levels of SIRT1 were examined.

View Article and Find Full Text PDF

Suppression of TLR4/NF-κB signaling by kaurenoic acid in a mice model of monosodium urate crystals-induced acute gout.

Arch Biochem Biophys

January 2025

Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan; Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan. Electronic address:

Aim: The aim of the current study was to investigate the potential therapeutic effect of kaurenoic acid (KA) against Monosodium Urate Crystals (MSU)- induced acute gout by downregulation of NF-κB signaling pathway, mitigating inflammation and oxidative stress produced by MSU crystals. KA potentially targeted NF-κB pathway activation and provided comprehensive insights through multiple approaches. This was accomplished by advanced analytical techniques.

View Article and Find Full Text PDF

Metabolic rewiring underlies effective macrophages defense to respond disease microenvironment. However, the underlying mechanisms driving metabolic rewiring to enhance macrophage effector functions remain unclear. Here, we demonstrated that the metabolic reprogramming in inflammatory macrophages depended on the acetylation of CLYBL, a citramalyl-CoA lyase, at lysine 154 (K154), and blocking CLYBL-K154 acetylation restricted the release of pro-inflammatory factors.

View Article and Find Full Text PDF

Pericytes mediate neuroinflammation via Fli-1 in endotoxemia and sepsis in mice.

Inflamm Res

January 2025

Department of Pathology and Laboratory Medicine, Medical University of South Carolina, 173 Ashley Ave, Charleston, SC, 29425, USA.

Background: Sepsis-associated encephalopathy (SAE) often results from neuroinflammation. Recent studies have shown that brain platelet-derived growth factor receptor β (PDGFRβ) cells, including pericytes, may act as early sensors of infection by secreting monocyte chemoattractant protein-1 (MCP-1), which transmits inflammatory signals to the central nervous system. The erythroblast transformation-specific (ETS) transcription factor Friend leukemia virus integration 1 (Fli-1) plays a critical role in inflammation by regulating the expression of key cytokines, including MCP-1.

View Article and Find Full Text PDF

Background: Sclerostin (SOST) is traditionally regarded as an osteocyte-derived secreted glycoprotein that regulates bone mineralization. Recent studies reported that SOST is also released from non-skeletal sources, especially during inflammation. However, the cellular source and regulatory mechanisms governing SOST generation in inflammation remain unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!