Tuberculosis (TB) poses a major worldwide public health problem. The increasing prevalence of TB, the emergence of multi-drug-resistant strains of Mycobacterium tuberculosis, the causative agent of TB, and the devastating effect of co-infection with HIV have highlighted the urgent need for the development of new antimycobacterial agents. Analysis of the complete genome sequence of M. tuberculosis shows the presence of genes involved in the aromatic amino acid biosynthetic pathway. Experimental evidence that this pathway is essential for M. tuberculosis has been reported. The genes and pathways that are essential for the growth of the microorganisms make them attractive drug targets since inhibiting their function may kill the bacilli. We have previously cloned and expressed in the soluble form the fourth shikimate pathway enzyme of the M. tuberculosis, the aroE-encoded shikimate dehydrogenase (mtSD). Here, we present the purification of active recombinant aroE-encoded M. tuberculosis shikimate dehydrogenase (mtSD) to homogeneity, N-terminal sequencing, mass spectrometry, assessment of the oligomeric state by gel filtration chromatography, determination of apparent steady-state kinetic parameters for both the forward and reverse directions, apparent equilibrium constant, thermal stability, and energy of activation for the enzyme-catalyzed chemical reaction. These results pave the way for structural and kinetic studies, which should aid in the rational design of mtSD inhibitors to be tested as antimycobacterial agents.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.pep.2005.10.004 | DOI Listing |
Plants (Basel)
November 2024
College of Grassland Science, Nanjing Agricultural University, Nanjing 210095, China.
Hairy vetch ( Roth) and smooth vetch ( Roth var. ) are important cover crops and legume forage with great economic and ecological values. Due to the large and highly heterozygous genome, full-length transcriptome reconstruction is a cost-effective route to mining their genetic resources.
View Article and Find Full Text PDFPlanta
October 2024
Natural Product Biotechnology Group, Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, 721 302, India.
Temporal histolocalization of floral volatiles in the petal epidermis of Murraya paniculata was found to be linked with the coordinated expression of candidate genes and successive accumulation of an internal pool of volatiles. Murraya paniculata (Rutaceae) is known for its highly fragrant ephemeral flowers that emit volatiles to attract nocturnal pollinators. To unfold the patterns of volatile emission in relation to floral life-span, we studied time-course accumulation and emission rate of scent volatiles at six timepoints of floral maturation, at an interval of 4 h starting from the bud stage to the senescence stage on the next day.
View Article and Find Full Text PDFFolia Microbiol (Praha)
September 2024
Division of Genomic Resources, ICAR-National Bureau of Agricultural Insect Resources, Bengaluru, 560 024, India.
The largest obstacle in the promotion of biopesticides is the existence of counterfeit products available in the market. Identification and quantification of antagonistic organisms in biopesticide products are the key to the reduction of spurious microbial pesticides. In this study, we have developed a simple, sensitive, isothermal-based colourimetric assay for specific detection of Bacillus subtilis from the biopesticide formulations and soil samples.
View Article and Find Full Text PDFPestic Biochem Physiol
September 2024
College of Plant Protection, Hebei Agricultural University, Baoding 071000, China; Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology/ State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071000, China. Electronic address:
The discovery of new targets and lead compounds is the key to developing new pesticides. The herbicidal target of drupacine has been identified as shikimate dehydrogenase (SkDH). However, the mechanism of interaction between them remains unclear.
View Article and Find Full Text PDFFood Chem
January 2025
Horticulture, School of Science, Edith Cowan University, 270 Joondalup Drive, Joondalup 6027, Western Australia, Australia.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!