The adsorption of phenol from aqueous solutions using a column packed with pre-treated Pinus pinaster bark was studied. The influence of the inlet phenol concentration (0.01 or 0.1 g/L) and the flow rate (6, 15.6 or 30 mL/min) on the breakthrough curves was analysed. An increase in the flow rate, decreased the time necessary to reach the breakthrough point and, for the highest inlet concentration, the dynamic capacity of the bed, from 7.5 to 0.4 min and from 0.38 to 0.15 mg phenol/go.d. bark, respectively, at 0.1 g/L. The LUB Design Approach was used to determine the equivalent length of unused bed. The lower LUB values, which imply a better utilization of the bark bed, were obtained at the higher flow rate. A model which considered the effect of axial dispersion was successfully used to describe the fixed-bed operation behaviour for the lower flow rates. For the lowest inlet phenol concentration, the axial dispersion coefficient increased significantly when the flow rate increased.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2004.12.041 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!