AI Article Synopsis

  • The study compares keratin gene sequences and their distribution in zebrafish with those in other fishes and mammals to understand their evolutionary history in vertebrates.
  • It identifies 16 type I and 7 type II keratin genes in zebrafish, noting their scattered arrangement in the genome, unlike the clustered arrangement seen in mammals.
  • The analysis suggests that zebrafish type I keratin genes have expanded through duplication events, leading to changes in their expression patterns, while certain keratin clusters remain conserved in vertebrate evolution.

Article Abstract

The sequence and chromosomal distribution of keratin genes of zebrafish were compared with that of other fishes and mammals to provide an insight into the evolution of this gene family in vertebrates. By comparative sequence analysis and radiation hybrid mapping, we identified 16 type I and 7 type II keratin genes in the zebrafish genome. This contrasts with mammals, where type I and type II keratin genes are similar in number. The keratin genes are scattered in the fish genome, contrasting with the two clusters of keratin genes in mammalian genomes. Compared to genes from two species of pufferfish, the zebrafish type I keratin genes underwent an expansion by independent tandem duplications. Expression profiles based on EST counts suggest that some of the tandemly duplicated type I keratin genes from zebrafish either underwent sub-functionalization or acquired new expression domains. The chromosomal arrangement of keratins 8, keratin18, and a second type II keratin, as a cluster of three genes, has remained conserved in vertebrate evolution, except for duplication of the three-gene cluster in some teleosts. This contrasts with other members of the keratin gene family, which diverged independently between fish and mammals.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.gene.2005.09.016DOI Listing

Publication Analysis

Top Keywords

keratin genes
32
type keratin
20
genes zebrafish
16
gene family
12
keratin
11
genes
10
keratin gene
8
fish mammals
8
analysis radiation
8
radiation hybrid
8

Similar Publications

Horn is a defensive weapon of sheep, consisting of a horny sheath and a bony core. The KRT2 gene is related to keratinization of the epidermis, so it is likely to be one of the contributor genes affecting horn type in sheep. In this study, we first analyzed the species-specific and tissue-specific expression of the KRT2 gene using transcriptome sequencing data.

View Article and Find Full Text PDF

Quantum molecular resonance ameliorates atopic dermatitis through suppression of IL36G and SPRR2B.

BMB Rep

January 2025

Department of Pharmacology, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; Department of Medical Sciences, Graduate School, The Catholic University of Korea, Seoul 06591, Korea; Institute for Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea.

Atopic dermatitis (AD) is a chronic, pruritic skin disease characterized by inflammation and skin lesion cornification. While the use of corticosteroids like dexamethasone (DXM), an antiinflammatory drug, improves symptoms temporarily and quickly, this use is not a cure. Thus, we aimed to identify a new therapeutic strategy for AD using quantum molecular resonance (QMR), a novel non-invasive technique with an electromagnetic field-based therapeutic approach as an alternative to pain killers.

View Article and Find Full Text PDF

Background: Autosomal recessive congenital ichthyosis (ARCI) is a group of genetic skin disorders characterized by abnormal keratinization, leading to significant health issues and reduced quality of life. ARCI encompasses harlequin ichthyosis (HI), congenital ichthyosiform erythroderma (CIE), and lamellar ichthyosis (LI). While all ARCI genes are linked to LI and CIE, HI is specifically associated with severe mutations in the gene.

View Article and Find Full Text PDF

Shared genetic factors and the interactions with fresh fruit intake contributes to four types squamous cell carcinomas.

PLoS One

December 2024

Department of Epidemiology & Ministry of Education Key Laboratory of Public Health Safety, School of Public Health, Fudan University, Shanghai, China.

Studies have reported risk factors for a single-squamous cell carcinoma(Single-SCCs). However, the shared common germline genetic factors and environmental factors have not been well elucidated with respect to augmented risk of pan-squamous cell carcinoma(Pan-SCCs). By integrating a large-scale genotype data of 1,928 Pan-SCCs cases and 7,712 age- and sex-matched controls in the UK Biobank cohort, as well as multiple transcriptome and protein databases, we conducted a multi-omics analysis.

View Article and Find Full Text PDF

Transcriptome analysis reveals the genetic basis underlying the formation and seasonal changes of nuptial pads in Rana chensinensis.

BMC Genomics

December 2024

Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, 152 Luoyulu, Hongshan District, Wuhan, 430079, China.

Background: Nuptial pads, a typical sexually dimorphic trait in anurans, are located on the first digit of the male forelimb in Rana chensinensis and exhibit morphological changes synchronized with breeding cycles. However, the genetic mechanisms underlying its formation and seasonal changes remain poorly understood.

Results: To identify genes and biological processes associated with the development and seasonal variations of nuptial pads, we conducted a comprehensive transcriptome analysis on nuptial pads and hind toe skin across both sexes at different breeding periods in R.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!