Aminoacyl-tRNA synthetases (AARSs) are required for translation in three different compartments of the plant cell: chloroplasts, mitochondria and the cytosol. Elimination of this basal function should result in lethality early in development. Phenotypes of individual mutants may vary considerably, depending on patterns of gene expression, functional redundancy, allele strength and protein localization. We describe here a reverse genetic screen of 50 insertion mutants disrupted in 21 of the 45 predicted AARSs in Arabidopsis. Our initial goal was to find additional EMB genes with a loss-of-function phenotype in the seed. Several different classes of knockouts were discovered, with defects in both gametogenesis and seed development. Three major trends were observed. Disruption of translation in chloroplasts often results in seed abortion at the transition stage of embryogenesis with minimal effects on gametophytes. Disruption of translation in mitochondria often results in ovule abortion before and immediately after fertilization. This early phenotype was frequently missed in prior screens for embryo-defective mutants. Knockout alleles of non-redundant cytosolic AARSs were in general not identified, consistent with the absolute requirement of cytosolic translation for development of male and female gametophytes. These results provide a framework for evaluating redundant functions of AARSs in Arabidopsis, a valuable data set of phenotypes resulting from multiple disruptions of a single basal process, and insights into which genes are required for both gametogenesis and embryo development and might therefore escape detection in screens for embryo-defective mutants.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1365-313X.2005.02580.xDOI Listing

Publication Analysis

Top Keywords

aminoacyl-trna synthetases
8
gametogenesis embryo
8
embryo development
8
aarss arabidopsis
8
disruption translation
8
screens embryo-defective
8
embryo-defective mutants
8
development
5
requirement aminoacyl-trna
4
synthetases gametogenesis
4

Similar Publications

With the advancement of genetic code expansion, the field is progressing towards incorporating multiple non-canonical amino acids (ncAAs). The specificity of aminoacyl-tRNA synthetases (aaRSs) towards ncAAs is a critical factor, as engineered aaRSs frequently show polyspecificity, complicating the precise incorporation of multiple ncAAs. To address this challenge, predicting binding affinity can be beneficial.

View Article and Find Full Text PDF

: The gene encodes for the catalytic α subunit of Cytoplasmic phenylalanine-tRNA synthetase (FARS1), an essential enzyme for protein biosynthesis in transferring its amino acid component to tRNAs. Biallelic pathogenic variants have been associated with a multisystemic condition, characterized by variable expressivity and incomplete penetrance. Here, we report the case of an 11 year-old girl presenting interstitial lung disease, supratentorial leukoencephalopathy with brain cysts, hepatic dysfunction, hypoalbuminemia, skin and joint hyperlaxity, growth retardation, and dysmorphic features.

View Article and Find Full Text PDF

Unlabelled: The reflexive translation of symbols in one chemical language to another defined genetics. Yet, the co-linearity of codons and amino acids is so commonplace an idea that few even ask how it arose. Readout is done by two distinct sets of proteins, called aminoacyl-tRNA synthetases (AARS).

View Article and Find Full Text PDF

The integrated stress response (ISR) is a conserved eukaryotic signaling pathway that responds to diverse stress stimuli to restore proteostasis. The strength and speed of ISR activation must be tuned properly to allow protein synthesis while maintaining proteostasis. Here, we describe how genetic perturbations change the dynamics of the ISR in budding yeast.

View Article and Find Full Text PDF

Background: Mutations in the LARS2 gene are correlated with Perrault syndrome, a rare autosomal recessive genetic disorder, that is typically characterized by sensorineural hearing loss and ovarian insufficiency.

Methods: Whole-exome sequencing and mutational analysis were employed to identify hearing loss-causing genes in a Chinese family from the Guangxi Zhuang Autonomous Region. Clinical phenotypes, audiological data, and color Doppler ultrasound of the family were collected, and a series of computer software were used to analyze the impact of genetic variations on protein structure and function.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!