A new lanthanide citrate motif of general formula [Ln(Hcit)(H2O)2.H2O]n, where Ln = Gd (1) and Nd (2) and Hcit3- = C(OH)(COO-)(CH2COO-)2, has been synthesized hydrothermally from Ln2O3 and citric acid at 100 degrees C and characterized by elemental analysis, IR, TG-DTA, single-crystal X-ray diffraction, and magnetic measurements. The structures can be seen as "ladder chains" along the a axis, with dinuclear Ln2O2 units serving as "steps" and R-COO groups as "uprights", which are connected by H bonds. The magnetic susceptibility between 2 and 300 K and the magnetization at 2 K, as a function of magnetic field between 0 and 5 T, were measured for both compounds. By modeling the magnetic behavior of the Gd compound with a dinuclear Hamiltonian [symbol: see text](S) = gmu(B)(S(A) + S(B))B(o) - J(o)S(A)S(B) (S(A) = S(B) = 7/2), a ferromagnetic exchange interaction J(o) = 0.039 cm(-1) was evaluated between Gd ions situated at d(o) = 4.321 angstroms in dinuclear units bridged by two symmetry-related tridentate carboxylate oxygens. The EPR spectrum of the Gd compound is discussed. The temperature dependence of the susceptibility of the Nd compound is caused by the depopulation of the excited crystal-field levels when the temperature decreases. The magnetic-field dependence of the magnetization of 2 is attributed to the ground-state Kramers' doublet populated at 2 K. The g factor of this ground-state doublet is calculated from the data and compared with values for other compounds reported in the literature.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ic0510056 | DOI Listing |
ACS Appl Mater Interfaces
December 2024
Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai 980-8578, Japan.
Spin-dependent charge tunneling transport of magnetic nanocomposites under alternating current or direct current has revolutionized the understanding of the quantum-mechanical phenomenon in complex granular solids. The tunnel magnetodielectric (TMD) and tunnel magnetoresistance (TMR) effects are two critical functionalities in this context, where dielectric permittivity and electrical resistance, respectively, change in response to an applied magnetic field due to charge tunneling. However, the structural correlation between TMD and TMR, as well as the mechanisms, remains poorly understood, largely due to the challenges in directly characterizing nanoscale intergranular interactions.
View Article and Find Full Text PDFSmall
December 2024
Department of Applied Physics and Center of Quantum Materials and Devices, Chongqing University, Chongqing, 401331, China.
The observation of both resonant quantum tunneling of magnetization (RQTM) and resonant quantum magnetodielectric (RQMD) effect in the perovskite multiferroic metal-organic framework [CHNH]Co(HCOO).is reported. An intrinsic magnetic phase separation emerges at low temperatures due to the hydrogen-bond-modified long-range super-exchange interaction, leading to the coexistence of canted antiferromagnetic order and single-ion (Co) magnets.
View Article and Find Full Text PDFChem Sci
December 2024
Frontier Institute of Science and Technology, State Key Laboratory of Electrical Insulation and Power Equipment, MOE Key Laboratory for Nonequilibrium Synthesis of Condensed Matter, Xi'an Key Laboratory of Electronic Devices and Materials Chemistry and School of Chemistry, Xi'an Jiaotong University 99 Yanxiang Road Xi'an Shaanxi 710054 P. R. China
The benzene tetraanion-bridged rare earth inverse arene amidinate complexes [{Ln(κ:η-Piso)}(μ-η:η-CH)] (2-Ln, Ln = Gd, Tb, Dy, Y; Piso = {(NDipp)C Bu}, Dipp = CH Pr-2,6) were prepared by the reduction of parent Ln(iii) bis-amidinate halide precursors [Ln(Piso)X] (Ln = Tb, Dy; X = Cl, I) or [Ln(Piso)I] (Ln = Gd, Y) with 3 eq. KC in benzene, or by the reaction of the homoleptic Ln(ii) complexes [Ln(Piso)] (Ln = Tb, Dy) with 2 eq. KC in benzene.
View Article and Find Full Text PDFMicron
December 2024
University of Science and Technology of China, Hefei 230026, China; Anhui Key Laboratory of Low-Energy Quantum Materials and Devices, High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences, Hefei 230031, China; High Magnetic Field Laboratory of Anhui Province, Hefei 230031, China; Anhui Laboratory of Advanced Photon Science and Technology, University of Science and Technology of China, Hefei 230026, China. Electronic address:
The Stabilization of bubble magnetic textures in zero magnetic field has garnered significant attention due to its potential application in spintronic devices. Herein, we employed a home-built rotatable magnetic force microscopy (MFM) to observe the evolution of magnetic domains in NiO/Ni/Ti thin films. Magnetic stripe domains decay into isolated magnetic bubbles under an out-of-plane magnetic field at 100 K, and magnetic stripes reappear when the external magnetic field is reduced to zero.
View Article and Find Full Text PDFNature
December 2024
Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA.
Controlling the functional properties of quantum materials with light has emerged as a frontier of condensed-matter physics, leading to the discovery of various light-induced phases of matter, such as superconductivity, ferroelectricity, magnetism and charge density waves. However, in most cases, the photoinduced phases return to equilibrium on ultrafast timescales after the light is turned off, limiting their practical applications. Here we use intense terahertz pulses to induce a metastable magnetization with a remarkably long lifetime of more than 2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!