We report the synthesis and characterization of perchlorate salts containing the following three novel complex cations each with a bidentate thioether ligand: binuclear cis-[Pt(CH3SCH2CH2CH2SCH3)(mu-OH)]22+, mononuclear cis-[Pt(CH3SCH2CH2CH2SCH3)(H2O)2]2+, and mononuclear cis-[Pd(CH3SCH2CH2CH2SCH3)(H2O)2]2+. Despite their analogous compositions, the mononuclear Pt(II) and Pd(II) complexes differ in the selectivity with which they promote the hydrolysis of polypeptides. The complex cis-[Pt(CH3SCH2CH2CH2SCH3)(H2O)2]2+ promotes slow but selective cleavage of Met-Pro peptide bonds at pH 2.0. The selectivity of the complex cis-[Pd(CH3SCH2CH2CH2SCH3)(H2O)2]2+ is pH-dependent. At pH 2.0, this Pd(II) complex promotes residue-selective hydrolysis of the X-Y bond in X-Y-Met and X-Y-His sequences; the rate is enhanced when residue Y is proline. At pH 7.0, this kinetic preference becomes sequence-selective in that the Pd(II) complex exclusively cleaves the X-Pro bond in X-Pro-Met and X-Pro-His sequences. The enhanced reactivity of the X-Pro amide group is attributed to the high basicity of its carbonyl oxygen atom. Binding of the metal(II) atom enhances the electrophilicity of the carbonyl carbon atom and promotes nucleophilic attack by a solvent water molecule. The bidentate thioether ligand disfavors the formation of hydrolytically unreactive complexes, allowing the Pd(II) complex to promote the cleavage reaction.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ic0506613DOI Listing

Publication Analysis

Top Keywords

pdii complex
12
bidentate thioether
8
thioether ligand
8
complex
7
thioether complexes
4
complexes palladiumii
4
palladiumii platinumii
4
platinumii artificial
4
artificial peptidases
4
peptidases residue-selective
4

Similar Publications

Palladium(II) complexes containing andrographolide appended N,O heterocyclic chelators: Investigation of anti-oxidant, anti-cancer and apoptotic activities.

J Inorg Biochem

January 2025

Department of Chemistry, Karpagam Academy of Higher Education, Coimbatore 641 021, India; Centre for Material Chemistry, Karpagam Academy of Higher Education (Deemed to be University), Coimbatore 641 021, India. Electronic address:

A series of new Pd(II) complexes were synthesized from the reaction of andrographolide appended hydrazide derivatives with potassium tetrachloropalladate K[PdCl]. The formation of the complexes was confirmed through structural assessments conducted using various spectroscopic techniques. From the spectral studies we confirmed that the ligands coordinated to Pd(II) ion via amine nitrogen and enone oxygen.

View Article and Find Full Text PDF

Designing an anticancer Pd(II) complex as poly(ADP-ribose) polymerase 1 inhibitor.

Int J Biol Macromol

January 2025

School of Biological and Food Engineering, Guangxi Science & Technology Normal University, Laibin, Guangxi 546199, China. Electronic address:

Targeting DNA repair mechanisms, particularly PARP-1 inhibition, has emerged as a promising strategy for developing anticancer therapies. we designed and synthesized two 2-thiazolecarboxaldehyde thiosemicarbazone palladium(II) complexes (C1 and C2), and evaluated their anti-cancer activities. These Pd(II) complexes exhibited potent PARP-1 enzyme inhibition and demonstrated considerable antiproliferative activity against various cancer cell lines.

View Article and Find Full Text PDF

Buchwald-Hartwig (BH) aminations are crucial for synthesizing arylamine motifs in numerous bioactive molecules and fine chemicals. While homogeneous palladium complexes can be effective catalysts, their high costs and environmental impact motivate the search for alternative approaches. Heterogeneous palladium single-atom catalysts (SAC) offer promising recoverable alternatives in C-C cross-couplings.

View Article and Find Full Text PDF

C-H activation is the most direct way of functionalizing organic molecules. Many advances in this field still require specific directing groups to achieve the necessary activity and selectivity. Developing C-H activation reactions directed by native functional groups is essential for their broad application in synthesis.

View Article and Find Full Text PDF

Water-soluble porphyrins have garnered significant attention due to their broad range of applications in biomedicine, catalysis, and material chemistry. In this work, water-soluble platinum(II) and palladium(II) complexes with porphyrins bearing ethyl phosphonate substituents, namely, Pt/Pd 10-(ethoxyhydroxyphosphoryl)-5,15-di(-carboxyphenyl)porphyrins (M3m, M = Pt(II), Pd(II)) and Pt/Pd 5,10-bis(ethoxyhydroxyphosphoryl)-10,20-diarylporphyrins (M1d-M3d; aryl = -tolyl (1), mesityl (2), -carboxyphenyl (3)), were synthesized by alkaline hydrolysis of the corresponding diethyl phosphonates M6m and M4d-M6d. NMR, UV-vis, and fluorescence spectroscopy revealed that the mono-phosphonates M3m tend to form aggregates in aqueous media, while the bis-phosphonates M3d exist predominantly as monomeric species across a wide range of concentrations (10-10 M), ionic strengths (0-0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!