This paper reports our initial efforts to integrate phenylacetylene-based conjugate pi-electron systems into hybrid semiconductive coordination networks, as part of the larger scheme to fully synergize organic functionalities and electronic properties in crystalline solid-state materials. On the basis of a well-established Pd-catalyzed procedure, ligands of 3,3',4,4'-tetrakis(methylthio)tolan (L1) and 1,3,5-tris[[3,4-bis(methylthio)phenyl]ethynyl]benzene (L2) were efficiently synthesized in relatively simple procedures. Molecule L1 reacts with BiBr3 to form a 2D semiconductive coordination network (L1.2BiBr3), which consists of infinite chains of the BiBr3 component cross-linked by L1 through the chelation between the 1,2-bis(methylthio) groups and the Bi(III) centers. Molecule L2 reacts with BiBr3 to from a 1D semiconductive coordination network (L2.2BiBr3), which features discrete tetrameric Bi4Br12 units linked by the thioether groups from L2 [only two of the three 1,2-bis(methylthio) groups from each L2 molecule are bonded to the Bi(III) centers]. Diffuse reflectance spectra of both L1.2BiBr3 and L2.2BiBr3 feature strong optical absorptions at energy levels significantly lower than those of the corresponding molecular solids (L1 and L2) and BiBr3, indicating significant electronic interaction between the organic pi-electron systems and the BiBr3 components. Both L1.2BiBr3 and L2.2BiBr3 readily form in high yields and are stable to air, providing advantages for further studies as potentially applicable semiconductive materials.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ic0512734DOI Listing

Publication Analysis

Top Keywords

semiconductive coordination
16
coordination networks
8
pi-electron systems
8
molecule reacts
8
reacts bibr3
8
coordination network
8
12-bismethylthio groups
8
l12bibr3 l22bibr3
8
semiconductive
5
bibr3
5

Similar Publications

Efficient room-temperature sensors for toxic gases are essential to ensure a safe and healthy life. Conducting frameworks have shown great promise in advancing gas sensing technologies. In this study, two new organic-inorganic frameworks [CuX(PPh)(L)], CP1 (X = I) and CP2 (X = Br) have been synthesized using (pyridin-4-yl)-N-(4H-1,2,4-triazol-4-yl)methanimine (L) and triphenylphosphine.

View Article and Find Full Text PDF

Conjugated coordination polymers (c-CPs), a novel class of organic-inorganic hybrid materials, are distinguished by their unique structural characteristics and exceptional charge transport properties. The electronic properties of these materials are critically determined by the constituting coordination atoms, with electron-rich selenol ligands emerging as promising candidates for constructing high-mobility semiconducting c-CPs. Currently, c-CPs incorporating selenium-substituted ligands remain scarce.

View Article and Find Full Text PDF

Energy crisis and environmental pollution are two central themes of contemporary research towards achieving sustainable development goals (SDGs). Material chemistry is the chief discipline that can resolve glitches in these areas through the appropriate design of chemical compounds with multifunctional properties. In this regard, two stable coordination polymers (CPs) were synthesised in this work using Zn(II) (3d) and Cd(II) (d) metal nodes with 1,4-benzenedicarboxylate () as the bridging ligand and monodentate pyridyl-N coordinated 9-fluoren-2-yl-pyridin-4-ylmethylene-amine (flpy) as the fluorogenic partner.

View Article and Find Full Text PDF

This paper reports the synthesis, crystal structures and conducting properties of the first BEDT-TTF radical-cation salts with symmetry tris-coordinated racemic lanthanide(III) anions. It is also the first crystallographic determination of the nine-coordinate tris(chelidonato)terbate and tris(chelidonato)dysprosate anions (chelidonic acid = clo = 4-oxo-4-pyran-2,6-dicarboxylic acid). Salt α-(BEDT-TTF)M(chelidonato)·EtOH·2HO is semimetallic for M = Tb, and semiconducting for M = Dy.

View Article and Find Full Text PDF

Complex internal stresses that appear in flexible thin-film electronic devices under long-term deformation operation are associated with incompatible mechanical properties of the multiple layers, which potentially cause intralayer fracture and separation. These defects may result in device instability, performance loss, and failure. Herein, a thermoplastic functional strategy is proposed for manufacturing high-performance stretchable semiconducting polymers with excellent strain-tolerance capacities for flexible electronic devices.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!