Two new isostructural complexes [M(H2biim)3][M(btc)(Hbiim)].2H2O (M = Co, (1); M = Ni, (2)) (btc = 1,3,5-benzenetricarboxylate; H2biim = 2,2'-biimidazole) have been synthesized and characterized by single-crystal X-ray diffraction. They present a unique structure consisting of two distinct units: the monomeric cations [M(H2biim)3]2+ and the two-dimensional (2D) anionic polymer [M(Hbiim)(btc)]2-. In the anionic moiety, the Hbiim- monoanion is simultaneously coordinated to one metal atom in a bidentate mode and further to another metal atom in a monodentate mode. The imidazolate groups bridge the two adjacent metal ions into a helical chain which is further arranged in left- and right-handed manners. These chains are bridged by btc ligands into a 2D brick wall structure. The most interesting aspect is that the [M(H2biim)3]2+ cations act as pillars and link the anionic layers via robust heteromeric hydrogen-bonded synthons (9) and (7) formed by the uncoordinated oxygen atoms of carboxylate groups and the H2biim ligands, resulting in a microporous metal-organic framework with one-dimensional (1D) channels (ca. 11.85 angstroms x 11.85 angstroms for 1 and 11.43 angstroms x 11.43 angstroms for 2). Magnetic properties of these two complexes have also been studied in the temperature range of 2-300 K, and their magnetic susceptibilities obey the Curie-Weiss law in the temperature range of 20-300 K (for 1) and 2-300 K (for 2), respectively, showing anti-ferromagnetic coupling through imidazolate bridging. Taking into consideration the Heisenberg infinite chain model as well as the possibility of chain-to-chain and chain-to-cation interactions, the anti-ferromagnetic exchange of 2 is analyzed via a correction for the molecular field, giving the values of g(cat) = 2.296, g(Ni) = 2.564, J = -13.30 cm(-1), and zJ' = -0.017 cm(-1). The microporous frameworks are stable at ca. 350 degrees C. They do not collapse after removal of the guest water molecules in the channels, and they adsorb methanol molecules selectively.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ic051195kDOI Listing

Publication Analysis

Top Keywords

microporous metal-organic
8
metal atom
8
1185 angstroms
8
angstroms 1143
8
1143 angstroms
8
temperature range
8
pillared-layer microporous
4
metal-organic frameworks
4
frameworks constructed
4
constructed robust
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!