Neural mechanisms of the ultrafast activities.

Clin EEG Neurosci

Faculty of Health Sciences, Aomori University of Health and Welfare, Aomori, Japan.

Published: October 2005

A brief review of previous studies is presented on ultra-fast activities > 300 Hz (high frequency oscillations, HFOs) overlying the cortical response in the somatosensory evoked potential (SEP) or magnetic field (SEF). The characteristics of somatosensory HFOs are described in terms of reproducibility and origin (area 3b and 1) of the HFOs, changes during a wake-sleep cycle, effects of higher stimulus rate or tactile interference, etc. Also, several hypotheses on the neural mechanisms of the HFOs are introduced; the early HFO burst is probably generated from action potentials of thalamocortical fibers at the time when they arrive at the area 3b (and 1), since this component is resistant to higher stimulus rate > 10Hz or general anesthesia: by contrast, the late HFO burst is sensitive to higher stimulus rate, reflecting activities of a postsynaptic neural network in the somatosensory cortices, area 3b and 1. As to possible mechanisms of the late HFO burst genesis, an interneuron hypothesis, a fast inhibitory postsynaptic potential (IPSP) hypothesis of the pyramidal cell and a chattering cell hypothesis will be discussed on the basis of physiological and pathological features of the somatosensory HFOs.

Download full-text PDF

Source
http://dx.doi.org/10.1177/155005940503600406DOI Listing

Publication Analysis

Top Keywords

higher stimulus
12
stimulus rate
12
hfo burst
12
neural mechanisms
8
somatosensory hfos
8
late hfo
8
hfos
5
mechanisms ultrafast
4
ultrafast activities
4
activities review
4

Similar Publications

Listeners with hearing loss have trouble following a conversation in multitalker environments. While modern hearing aids can generally amplify speech, these devices are unable to tune into a target speaker without first knowing to which speaker a user aims to attend. Brain-controlled hearing aids have been proposed using auditory attention decoding (AAD) methods, but current methods use the same model to compare the speech stimulus and neural response, regardless of the dynamic overlap between talkers which is known to influence neural encoding.

View Article and Find Full Text PDF

Functional magnetic resonance imaging (fMRI) has dramatically advanced non-invasive human brain mapping and decoding. Functional near-infrared spectroscopy (fNIRS) and high-density diffuse optical tomography (HD-DOT) non-invasively measure blood oxygen fluctuations related to brain activity, like fMRI, at the brain surface, using more-lightweight equipment that circumvents ergonomic and logistical limitations of fMRI. HD-DOT grids have smaller inter-optode spacing (~ 13 mm) than sparse fNIRS (~ 30 mm) and therefore provide higher image quality, with spatial resolution ~ 1/2 that of fMRI, when using the several source-detector distances (13-40 mm) afforded by the HD-DOT grid.

View Article and Find Full Text PDF

Insights into proprioceptive acuity assessed with a dynamic joint position reproduction task.

J Electromyogr Kinesiol

January 2025

Centro Polifunzionale di Scienze Motorie, Università degli Studi di Genova, Genoa, Italy; Department of Experimental Medicine, Section of Human Physiology, Università degli Studi di Genova, Genoa, Italy.

This study investigated proprioceptive acuity using the conventional joint position reproduction (JPR) task and a modified version, the Dynamic JPR task (D-JPR), during Concentric and Eccentric muscle contractions. Seventeen participants were recruited and received a tactile stimulus indicating the position cue at Initial (INI), Intermediate (INT), and Final (FIN) phases of movements, during either the concentric or eccentric phases. After the movement, they replicated the position where they received the stimulus.

View Article and Find Full Text PDF

Varroa Volatiles Offer Chemical Cues to Honey Bees for Initial Parasitic Recognition.

Biomolecules

January 2025

Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Provincial Key Laboratory of Animal Nutrition and Efficient Feeding, College of Animal Science and Technology, Shandong Agricultural University, Tai'an 271018, China.

Olfaction mediated by the antennae is a vital sensory modality for arthropods and could be applied as a tool in pest control. The ectoparasitic mite poses a significant threat to the health of the honey bee worldwide and has garnered global attention. To better understand the chemical ecology of this host-parasite relationship, we collected and characterized the volatile organic compounds (VOCs) from and used electroantennography (EAG) to record the responses of honey bee ( and ) antennae to the different VOCs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!