Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A magnetically agitated photocatalytic reactor (MAPR) has been developed and assessed for oxidation of phenol. The MAPR uses a titanium dioxide composite photocatalyst with a ferromagnetic barium ferrite core. The catalyst motion was controlled with a dual-component magnetic field. First, a permanent magnet above the reactor provided a static magnetic field to counteract the force of gravity, hence increasing catalyst exposure to UV. Second, an alternating magnetic field generated by a solenoid was used to agitate the catalyst, thus increasing mass transfer between pollutants and byproducts to the catalyst. Optimal performance of the MAPR was achieved with the permanent magnet present and 1 A of alternating current to the solenoid between 20 and 80 Hz. Operating with a 60-Hz signal at 1 A with the permanent magnet present and 100 mg of catalyst, the system reduced an 11 mg/L phenol concentration by97% and decreased nonpurgeable dissolved organic carbon by 93% in 7 h using three 8-W 365-nm peak UV lamps.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/es0508121 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!