A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Transport of MS2 phage, Escherichia coli, Clostridium perfringens, Cryptosporidium parvum, and Giardia intestinalis in a gravel and a sandy soil. | LitMetric

AI Article Synopsis

  • To establish protection zones around groundwater wells and safe distances for recharge systems, it's crucial to understand how microorganisms are removed during soil filtration.
  • Column experiments using different soil types showed that the removal rates of various microbial agents were generally efficient but varied based on the soil type, with gravel performing better than fine sandy soil.
  • Factors like soil characteristics and flow rates significantly impact the effectiveness of microbial removal, indicating that simplistic models based on grain and particle sizes can't accurately predict the behavior of microorganisms in subsurface environments.
  • The experiments revealed that common bacteria, such as E. coli, exhibited low removal rates in field conditions, suggesting complexities that challenge the direct application of lab results to real-world scenarios.

Article Abstract

To define protection zones around groundwater abstraction wells and safe setback distances for artificial recharge systems in watertreatment, quantitative information is needed about the removal of microorganisms during soil passage. Column experiments were conducted using natural soil and water from an infiltration site with fine sandy soil and a river bank infiltration site with gravel soil. The removal of phages, bacteria, bacterial spores, and protozoan (oo)-cysts was determined at two velocities and compared with field data from the same sites. The microbial elimination rate (MER) in both soils was generally >2 log, but MER in the gravel soil was higher than that in the fine sandy soil. This was attributed to enhanced attachment, related to higher metal-hydroxides content. From the high sticking efficiencies (>1) and the low influence of flow rate on MER it was deduced that straining played a significant role in the removal of Escherichia coli and Cryptosporidium parvum oocysts in the gravel soil. Lower removal of oocysts than the 4-5 times smaller E. coli and spores in the fine sand indicates that the contribution of straining is variable and needs further attention in transport models. Thus, simple extrapolation of grain size and particle size to the extent of microbial transport underground is inappropriate. Finally, the low MER of indigenous E. coli and Clostridium perfringens observed in the soil columns as well as under field conditions and the second breakthrough peak found for Cryptosporidium and spores in the fine sandy soil upon a change in the feedwater pH indicate a significant role of detachment and retardation to microbial transport and the difficulty of extrapolation of quantitative column test results to field conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1021/es050427bDOI Listing

Publication Analysis

Top Keywords

sandy soil
16
fine sandy
12
gravel soil
12
soil
10
escherichia coli
8
coli clostridium
8
clostridium perfringens
8
cryptosporidium parvum
8
infiltration site
8
rate mer
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!