Normally, bimolecular reactions are analyzed in terms of the Smoluchowski theory. However, when one attempts to generalize this analysis to cases where diffusion proceeds in two other than in three dimensions, one soon encounters severe conceptual difficulties. Although kinetic studies of membrane enzymes are generally difficult because the usual kinetic formalism refers to nonaggregated homogenous solutions, a major goal of our research is to define the molecular mechanism(s) by which alterations in membrane-bound substrate contents affect the enzyme activity in the same membrane. For that purpose, a simplified random-walk model was adopted in the present work. The enzyme reaction in the two-dimensional membrane could be calculated theoretically by applying the classical analysis of heat equation. As a result, the theoretical rate equation well accounting experimental findings was derived on the model of the liver microsomal NADH-cytochrome b5 reductase reaction. Furthermore, it was found that the modification of the simple rigid-sphere collision theory by including a term called the steric factor was not necessary in this derived equation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2220/biomedres.26.207 | DOI Listing |
ACS Appl Mater Interfaces
December 2024
Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
A biofuel cell is an electrochemical device using exoelectrogen or biocatalysts to transfer electrons from redox reactions to the electrodes. While wild-type microbes and natural enzymes are often employed as exoelectrogen and biocatalysts, genetically engineered or modified organisms have been developed to enhance exoelectrogen activity. Here, we demonstrated a redox-enzyme integrated microbial fuel cell (REI-MFC) design based on an exoelectrogen-enhancing strategy that reinforces the electrogenic activity of MR1 by displaying an extra redox enzyme on the cell surface.
View Article and Find Full Text PDFClin Chim Acta
January 2025
Department of Traditional Chinese Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou 350001, China; Department of Hematology, Fujian Provincial Hospital, Fuzhou 350001, China. Electronic address:
Recessive congenital methemoglobinemia (RCM) is a hereditary autosomal disorder with an extremely low incidence rate. Here, we report a case of methemoglobinemia type I in a patient with congenital persistent cyanosis. The condition was attributed to a novel compound heterozygous mutation in CYB5R3, characterized by elevated methemoglobin levels (13.
View Article and Find Full Text PDFActa Haematol
May 2024
Department of Pediatrics, The Third Xiangya Hospital of Central South University, Changsha, China.
Proteins
April 2024
Department of Physical Therapy and Rehabilitation Science, University of Kansas Medical Center, Kansas City, Kansas, USA.
NADH cytochrome b oxidoreductase (Ncb5or) is a cytosolic ferric reductase implicated in diabetes and neurological conditions. Ncb5or comprises cytochrome b (b ) and cytochrome b reductase (b R) domains separated by a CHORD-Sgt1 (CS) linker domain. Ncb5or redox activity depends on proper inter-domain interactions to mediate electron transfer from NADH or NADPH via FAD to heme.
View Article and Find Full Text PDFMol Syndromol
October 2023
LR16IPT07, Laboratory of Molecular and Cellular Hematology, Pasteur Institute of Tunis, University of Tunis El Manar, Tunis, Tunisia.
Introduction: NADH-cytochrome b5 reductase deficiency due to pathogenic variants in the CYB5R3 gene causes recessive congenital methemoglobinemia (RCM) type I or type II. In type I, cyanosis from birth is the only major symptom, and the enzyme deficiency is restricted only to erythrocytes. Whereas in type II, cyanosis is associated with severe neurological manifestations, and the enzyme deficiency is generalized to all tissues.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!