Normally, bimolecular reactions are analyzed in terms of the Smoluchowski theory. However, when one attempts to generalize this analysis to cases where diffusion proceeds in two other than in three dimensions, one soon encounters severe conceptual difficulties. Although kinetic studies of membrane enzymes are generally difficult because the usual kinetic formalism refers to nonaggregated homogenous solutions, a major goal of our research is to define the molecular mechanism(s) by which alterations in membrane-bound substrate contents affect the enzyme activity in the same membrane. For that purpose, a simplified random-walk model was adopted in the present work. The enzyme reaction in the two-dimensional membrane could be calculated theoretically by applying the classical analysis of heat equation. As a result, the theoretical rate equation well accounting experimental findings was derived on the model of the liver microsomal NADH-cytochrome b5 reductase reaction. Furthermore, it was found that the modification of the simple rigid-sphere collision theory by including a term called the steric factor was not necessary in this derived equation.

Download full-text PDF

Source
http://dx.doi.org/10.2220/biomedres.26.207DOI Listing

Publication Analysis

Top Keywords

nadh-cytochrome reductase
8
evaluation data
4
data terms
4
terms two-dimensional
4
two-dimensional random
4
random walk
4
walk model
4
model interaction
4
interaction nadh-cytochrome
4
reductase cytochrome
4

Similar Publications

A Redox-Enzyme Integrated Microbial Fuel Cell Design Using the Surface Display System in MR-1.

ACS Appl Mater Interfaces

December 2024

Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.

A biofuel cell is an electrochemical device using exoelectrogen or biocatalysts to transfer electrons from redox reactions to the electrodes. While wild-type microbes and natural enzymes are often employed as exoelectrogen and biocatalysts, genetically engineered or modified organisms have been developed to enhance exoelectrogen activity. Here, we demonstrated a redox-enzyme integrated microbial fuel cell (REI-MFC) design based on an exoelectrogen-enhancing strategy that reinforces the electrogenic activity of MR1 by displaying an extra redox enzyme on the cell surface.

View Article and Find Full Text PDF

A novel stoploss mutation CYB5R3 c.906A>G(p.*302Trpext*42) involved in the pathogenesis of hereditary methemoglobinemia.

Clin Chim Acta

January 2025

Department of Traditional Chinese Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou 350001, China; Department of Hematology, Fujian Provincial Hospital, Fuzhou 350001, China. Electronic address:

Recessive congenital methemoglobinemia (RCM) is a hereditary autosomal disorder with an extremely low incidence rate. Here, we report a case of methemoglobinemia type I in a patient with congenital persistent cyanosis. The condition was attributed to a novel compound heterozygous mutation in CYB5R3, characterized by elevated methemoglobin levels (13.

View Article and Find Full Text PDF
Article Synopsis
  • - Recessive congenital methemoglobinemia (RCM) is a genetic disorder caused by mutations in the CYB5R3 gene, resulting in a deficiency of the NADH cytochrome b5 reductase enzyme; it can be classified into two types based on the extent of red blood cell impact.
  • - A case study of a 5-year-old boy with cyanosis and low oxygen saturation revealed two specific mutations in the CYB5R3 gene that led to abnormal protein structures, contributing to his condition of RCM type I.
  • - The findings indicate that the severity of methemoglobinemia, whether classified as type I or II, correlates with the nature of CYB5R3
View Article and Find Full Text PDF

NADH cytochrome b oxidoreductase (Ncb5or) is a cytosolic ferric reductase implicated in diabetes and neurological conditions. Ncb5or comprises cytochrome b (b ) and cytochrome b reductase (b R) domains separated by a CHORD-Sgt1 (CS) linker domain. Ncb5or redox activity depends on proper inter-domain interactions to mediate electron transfer from NADH or NADPH via FAD to heme.

View Article and Find Full Text PDF

Introduction: NADH-cytochrome b5 reductase deficiency due to pathogenic variants in the CYB5R3 gene causes recessive congenital methemoglobinemia (RCM) type I or type II. In type I, cyanosis from birth is the only major symptom, and the enzyme deficiency is restricted only to erythrocytes. Whereas in type II, cyanosis is associated with severe neurological manifestations, and the enzyme deficiency is generalized to all tissues.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!