AI Article Synopsis

  • A semiempirical multiphonon model is utilized to analyze the absorption coefficient of materials that transmit far-infrared light, focusing on quantum-mechanical oscillators within a Morse potential framework.
  • This model combines known material properties with empirical absorption data to accurately predict intrinsic absorption in the multiphonon regions of the materials.
  • The extinction data, which is crucial for understanding the performance of materials like GaAs, GaP, ZnS, and ZnSe, is gathered using a Fourier-transform spectrometer, and models help distinguish between scattering and absorption losses.

Article Abstract

A semiempirical multiphonon model based on quantum-mechanical oscillators under a Morse potential is applied to the absorption coefficient of far-infrared transmitting materials. Known material properties are combined with absorption coefficient data to fit the empirical parameters of the model. This provides an accurate means of predicting the intrinsic absorption of the materials in their multiphonon regions. Extinction data are obtained by measuring material transmittances with a Fourier-transform spectrometer and comparing them with the lossless transmittances predicted by Sellmeier models. Where appropriate, scatter models are used to separate the extinction into loss due to scatter and absorption. Data and model parameters are presented for GaAs, GaP, ZnS, and ZnSe.

Download full-text PDF

Source
http://dx.doi.org/10.1364/ao.44.006913DOI Listing

Publication Analysis

Top Keywords

absorption coefficient
12
transmitting materials
8
absorption
5
modeling frequency-
4
frequency- temperature-dependent
4
temperature-dependent absorption
4
coefficient long-wave-infrared
4
long-wave-infrared 2-25
4
2-25 microm
4
microm transmitting
4

Similar Publications

Study of the N2 vibrational relaxation behaviors via the CO rovibrational thermometry.

J Chem Phys

December 2024

Deep Space Exploration Laboratory/Department of Modern Mechanics, University of Science and Technology of China, Hefei 230026, People's Republic of China.

This paper performed a comprehensive study of the thermal nonequilibrium effects of CO/Ar mixtures with various degrees of N2 additions and probed the N2 relaxation behaviors via the CO rovibrational thermometry. The rovibrational temperature time histories of shock-heated CO/N2/Ar mixtures were measured via a laser-absorption technique, and the corresponding vibrational relaxation data were summarized at 1890-3490 K. The measured results were compared with predictions from the Schwartz-Slawsky-Herzfeld (SSH) formula and the state-to-state (StS) approach (treating CO and N2 as pseudo-species).

View Article and Find Full Text PDF

Silicon heterojunction (SHJ) solar cells, as one of the most promising passivated contact solar cell technologies of the next generation, have the advantages of high conversion efficiency, high open-circuit voltage, low-temperature coefficient, and no potential-induced degradation. For the single-side rear-emitter SHJ solar cells, the n-type carrier selective layer, which serves as the light-incident side, plays a pivotal role in determining the performance of heterojunction devices. Consequently, a superior n-doped layer should exhibit high optical transmittance and minimal optical absorption, along with a substantial effective doping level to guarantee the formation of dark conductivity (σ) and electron-transport capacity.

View Article and Find Full Text PDF

We report a method to directly 3-D print complex heterogeneous optical phantoms with programmable tissue-mimicking absorption and scattering properties. The proposed approach utilizes commercially available multi-color mixing extruders and off-the-shelf polylactic acid (PLA) filaments, making this technique low-cost and broadly accessible. We systematically characterized optical properties, including both absorption and reduced scattering coefficients, at a wide range of mixing ratios of gray, white and translucent filaments and validated our hypothesis of a linear-mixing model between the filament mixing ratios and the resulting optical properties.

View Article and Find Full Text PDF

In the present work, a diazonium salt is prepared by a diazonium reaction of sulfamerazine in the presence of aqueous hydrochloric acid and sodium nitrate. Structural confirmation of azo compounds synthesize is achieved by mass spectrometry, infrared spectroscopy, and H, C nuclear magnetic resonance. The sample geometry is derived using Density Functional Theory (DFT) and DT-DFT applied to the basis set B3LYPL6-311 + G(d,p).

View Article and Find Full Text PDF

Bright NIR-II emissive cyanine dye-loaded lipoprotein-mimicking nanoparticles for fluorescence imaging-guided and targeted NIR-II photothermal therapy of subcutaneous glioblastoma.

J Nanobiotechnology

December 2024

School of Science, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen, 518055, China.

Cyanine dye-containing nanoparticles have widely been used in "all-in-one" NIR fluorescence imaging (FI)-guided photothermal therapy (PTT) because of their intrinsically large extinction coefficient and available physical and chemical modulation methods to tune absorption and emission wavelengths. The combination of good brightness and excellent tumor-targeting capacity is the key to realize efficient NIR-II FI-guided PTT. In this study, by covalently decorating NIR-II absorptive cyanine dyes with bulky AIE motify, we demonstrate how steric hindrance suppresses π-π stacking-induced fluorescence quenching and contributes to the good brightness of NIR-II FI of subcutaneous glioblastoma.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: