The cyclin dependent kinase inhibitor Sic1 and the cyclin Clb5 are essential regulators of the cyclin dependent kinase Cdc28 during the G1 to S transition in budding yeast. Yeast enters S phase after ubiquitin-mediated degradation of Sic1, an event triggered by Cln1, 2-Cdc28 mediated phosphorylation. We recently showed that Sic1 is involved in carbon source modulation of the critical cell size required to enter S phase. Here we show that the amount and sub-cellular localization of Sic1 are also carbon source-modulated. We identify a bipartite nuclear localization sequence responsible for nuclear localization of Sic1 and for correct cell cycle progression in a carbon-source dependent manner. Similarly to Cip/Kip proteins-Sic1 mammalian counterparts-Sic1 facilitates nuclear accumulation of its cognate cyclin, since cytoplasmic building-up of Clb5 is observed upon switching off expression of the SIC1 gene. Our data indicate a previously unrecognized inhibitor/activator dual role for Sic1 and put it among key molecules whose activity is regulated by their nuclear-cytoplasmic localization.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4161/cc.4.12.2189 | DOI Listing |
Clin Drug Investig
January 2025
Department of Public Health Sciences, University of Virginia, 560 Ray C Hunt Dr., Room 2107, Charlottesville, VA, USA.
Background And Objective: Cyclin-dependent kinase (CDK)4/6 inhibitors in combination with endocrine therapy (ET) significantly enhance progression-free survival and overall survival in patients diagnosed with HR+/HER2- metastatic breast cancer (MBC). However, they are highly expensive, and their economic impact has not been fully evaluated. This is a retrospective secondary analysis evaluating the cost effectiveness of these drugs, differentiating between medication-related and non-medication costs from a healthcare perspective.
View Article and Find Full Text PDFFoods
January 2025
Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China.
Dried apricots are rich in a variety of polyphenols, which have anti-cancer activity. In this study, 949 phenolic substances were found by means of UPLC-MS/MS, mainly including 2',7-dihydroxy-3',4'-dimethoxyisoflavan, scopoletin, rutin, quercetin-3-O-robinobioside, and elaidolinolenic acid. The results indicated that dried apricot polyphenols (DAPs) could cause cell cycle arrest in the G0/G1 and G2/M phases by decreasing the cyclin D1, CDK4, cyclin B1, CDK1, and CDK6 levels in A549 human lung adenocarcinoma cells.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Laboratory of Chronobiology, Institute of Biosciences and Applications (IBA), National Centre for Scientific Research (NCSR) "Demokritos", 153 41 Aghia Paraskevi, Greece.
: Pancreatic Ductal Adeno-Carcinoma (PDAC) is a highly aggressive cancer, with limited treatment options. Disruption of the circadian clock, which regulates key cellular processes, has been implicated in PDAC initiation and progression. Hence, targeting circadian clock components may offer new therapeutic opportunities for the disease.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-901, SP, Brazil.
In the flower development study, we identified SCI1 (Stigma/style Cell-cycle Inhibitor 1), a regulator of cell proliferation. SCI1 interacts with NtCDKG;2 ( Cyclin-Dependent Kinase G;2), a homolog of human CDK11, which is responsible for RanGTP-dependent microtubule stabilization, regulating spindle assembly rate. In a Y2H screening of a cDNA library using NtCDKG;2 as bait, a RanBP1 (Ran-Binding Protein 1) was revealed as its interaction partner.
View Article and Find Full Text PDFCell Rep Med
December 2024
Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA; Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA. Electronic address:
Mitochondrial uncouplers dissipate proton gradients and deplete ATP production from oxidative phosphorylation (OXPHOS). While the growth of prostate cancer depends on OXPHOS-generated ATP, the oncogenic pathway mediated by the transcription factor E2F1 is crucial for the progression of this deadly disease. Here, we report that mitochondrial uncouplers, including tizoxanide (TIZ), the active metabolite of the Food and Drug Administration (FDA)-approved anthelmintic nitazoxanide (NTZ), inhibit E2F1-mediated expression of genes involved in cell cycle progression, DNA synthesis, and lipid synthesis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!