The human skin holds the full machinery for pro-opiomelanocortin processing. The alpha-melanocyte-stimulating hormone (alpha-MSH)/melanocortin-1-receptor cascade has been implicated as a major player via the cAMP signal in the control of melanogenesis. Only very recently the beta-endorphin/mu-opiate receptor signal has been added to the list of regulators of melanocyte dendricity and melanin formation. In this context it was reported that (6R)-l-erythro-5,6,7,8-tetrahydrobiopterin (6BH(4)) can act as an allosteric inhibitor of tyrosinase, the key enzyme in melanogenesis, and this inhibition is reversible by both alpha- and beta-MSH. It was also shown earlier that 7BH(4), the isomer of 6BH(4), is twice as active in this inhibition reaction. However, as yet it is not known whether 7BH(4) is indeed present in loco in the melanosome. We here provide evidence that this isomer is present in this organelle in a concentration range up to 50 x 10(-6) M. Determination of beta-MSH in melanosomal extracts yielded 10 pg/mg protein. Moreover, we demonstrate reactivation of the 7BH(4)/tyrosinase inhibitor complex by beta-MSH, whereas alpha-MSH failed to do so. Furthermore, we show intra-melanosomal l-dopa formation from dopachrome by 7BH(4) in a concentration range up to 134 x 10(-6) M. Based on these results, we propose a new receptor-independent mechanism in the control of tyrosinase/melanogenesis by beta-MSH and the pterin 7BH(4).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1677/joe.1.06275 | DOI Listing |
Infant Behav Dev
January 2025
Department of Psychology, Arizona State University, USA.
Background: Early intervention is effective for reducing ADHD symptoms and related impairments, yet methods of identifying young children in need of services are lacking. Most early predictors of ADHD previously identified are of limited clinical utility. This study examines several theoretically relevant predictors of ADHD in infancy and toddlerhood and whether assessment at multiple time points improves prediction.
View Article and Find Full Text PDFPlast Reconstr Surg
December 2024
Copenhagen University Hospital, Department of Plastic Surgery and Burns Treatment, Rigshospitalet, Copenhagen, Denmark.
Background: Capsular contracture is a frequent and severe complication following breast implant surgery. Although several theories on the pathophysiology exist, the exact molecular mechanisms remain unclear. This study aimed to identify the specific genes, signaling pathways, and immune cells associated with capsular contracture.
View Article and Find Full Text PDFNoise Health
January 2025
School of Public Health, Southern Medical University, Guangzhou 510515, China.
Hearing loss (HL) is a prevalent health concern with a significant impact on society and the economy. Several factors contribute to the development of hearing impairment, with noise overexposure being the primary culprit. Diabetes mellitus (DM) is also a factor in hearing impairment, and studies have shown a positive correlation between DM and HL; however, the exact causal relationship and pathogenesis remain contentious.
View Article and Find Full Text PDFJ Chin Med Assoc
October 2024
Department of Anesthesiology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan, ROC.
Background: Pruritus is a distressing symptom of systemic opioid analgesia that responds poorly to conventional antipruritus treatments. This study aimed to determine the incidence and risk factors for postoperative pruritus using intravenous patient-controlled analgesia (IV-PCA).
Methods: Opioid-naïve patients who underwent morphine-based IV-PCA for postoperative pain at a tertiary center between January 1, 2020, and June 30, 2023, were included retrospectively.
Diabetes
January 2025
Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark.
To curb the obesity epidemic, it is imperative that we improve our understanding of the mechanisms controlling fat mass and body weight regulation. While great progress has been made in mapping the biological feedback forces opposing weight loss, the mechanisms countering weight gain remain less well defined. Here, we integrate a mouse model of intragastric overfeeding with a comprehensive evaluation of the regulatory aspects of energy balance, encompassing food intake, energy expenditure, and fecal energy excretion.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!