Possible involvement of organic anion transporting polypeptide 1c1 in the photoperiodic response of gonads in birds.

Endocrinology

Division of Biomodeling, Graduate School of Bioagricultural Sciences, and Institute for Advanced Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan.

Published: March 2006

The photoperiodic response of the gonads requires T3, which is generated photoperiodically from T4 by type 2 iodothyronine deiodinase in the hypothalamus. Although thyroid hormones were long thought to traverse the plasma membrane by passive diffusion due to their lipophilic nature, it is now known that several organic anion transporting polypeptides (Oatp) transport thyroid hormones into target cells. In this study, we have used database searches to isolate DNA sequences encoding members of the chicken Oatp family and constructed a molecular phylogenetic tree. Comprehensive expression analyses using in situ hybridization revealed strong expression of cOatp1c1 and weak expression of cOatp1b1 in the ventro-lateral walls of basal tuberal hypothalamus, whereas expression of four genes (cOatp1a1, cOatp1b1, cOatp1c1, and cOatp3a2) was observed in the choroid plexus. Expression levels of all these genes in both regions were not different between short-day and long-day conditions. Functional expression of cOatp1c1 in Chinese hamster ovary cells revealed that cOatp1c1 is a highly specific transporter for T4 with an apparent Km of 6.8 nm and a Vmax of 1.50 pmol per milligram of protein per minute. These results suggest that cOatp1c1 could be involved in the thyroxine transport necessary for the avian photoperiodic response of the gonads.

Download full-text PDF

Source
http://dx.doi.org/10.1210/en.2005-1090DOI Listing

Publication Analysis

Top Keywords

photoperiodic response
12
response gonads
12
organic anion
8
anion transporting
8
thyroid hormones
8
expression coatp1c1
8
expression
6
coatp1c1
5
involvement organic
4
transporting polypeptide
4

Similar Publications

The tiller angle, one of the critical factors that determine the rice plant type, is closely related to rice yield. An appropriate rice tiller angle can improve rice photosynthetic efficiency and increase yields. In this study, we identified a transcription factor, TILLRE ANGLE CONTROL 8 (TAC8), that is highly expressed in the rice tiller base and positively regulates the tiller angle by regulating cell length and endogenous auxin content; TAC8 encodes a TEOSINTE BRANCHED1/CYCLOIDEA/PCF transcriptional activator that is highly expressed in the nucleus.

View Article and Find Full Text PDF

In this study, we investigated the photoperiodic responses regulating erect thallus formation in (KU-1293). We found that, through critical day length analysis and night break treatment culture experiments, formed erect thalli under short-day conditions, indicating a genuine photoperiodic response. The critical day length for this morphological change was 10-11 h.

View Article and Find Full Text PDF

Evaluation of the Digital Ventilated Cage® system for circadian phenotyping.

Sci Rep

January 2025

Sir Jules Thorn Sleep and Circadian Neuroscience Institute, Kavli Institute for Nanoscience Discovery, Nuffield Department of Clinical Neurosciences, University of Oxford, Dorothy Crowfoot Hodgkin Building, South Parks Road, Oxford, OX1 3QU, UK.

The study of circadian rhythms has been critically dependent upon analysing mouse home cage activity, typically employing wheel running activity under different lighting conditions. Here we assess a novel method, the Digital Ventilated Cage (DVC, Tecniplast SpA, Italy), for circadian phenotyping. Based upon capacitive sensors mounted under black individually ventilated cages with inbuilt LED lighting, each cage becomes an independent light-controlled chamber.

View Article and Find Full Text PDF

To forecast how fast populations can adapt to climate change, it is essential to determine the evolutionary potential of different life-cycle stages under selection. In birds, timing of gonadal development and moult are primarily regulated by photoperiod, while laying date is highly phenotypically plastic to temperature. We tested whether geographic variation in phenology of these life-cycle events between populations of great tits () has a genetic basis, indicating that contemporary genetic adaptation is possible.

View Article and Find Full Text PDF

How to survive mild winters: Cold acclimation, deacclimation, and reacclimation in winter wheat and barley.

Plant Physiol Biochem

January 2025

Laboratory of Plant Stress Biology and Biotechnology, Department of Plant Genetics and Crop Breeding, Czech Agrifood Research Center, Drnovská 507, 161 06, Prague 6, Ruzyně, Czech Republic.

Cold acclimation and vernalization represent the major evolutionary adaptive responses to ensure winter survival of temperate plants. Due to climate change, mild winters can paradoxically worsen plant winter survival due to cold deacclimation induced by warm periods during winter. It seems that the ability of cold reacclimation in overwintering Triticeae cereals is limited, especially in vernalized plants.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!