Cancer cells ablation with irreversible electroporation.

Technol Cancer Res Treat

Neufeld Cardiac Research Institute, Sheba Medical Center, Tel-Aviv University, Tel-Hashomer, Israel.

Published: December 2005

In this study we perform in vitro irreversible electroporation (IRE) experiments with human hepatocarcinoma cells (HepG2) to investigate IRE as a new technique for undesirable tissue ablation. Irreversible electroporation (IRE) is the irreversible permeabilization of the cell membrane through the application of microsecond through millisecond electrical pulses. Until now IRE was studied only as an undesirable condition during the use of reversible electroporation in gene therapy and electrochemotherapy. There was a possibility that the IRE ablation domain is mostly superimposed on the electrical pulses induced Joule heating thermal ablation domain. This study demonstrates that there is a real and substantial domain of electrical parameters for IRE ablation of cancer that is distinct from the thermal domain and which results in complete cancer cell ablation. Experiments show that the application of 1500 V/cm in three sets of ten pulses of 300 microseconds each can produce complete cancer cell ablation. We also find that the use of multiple pulses appears to be more effective for cancer cell ablation than the application of the same energy in one single pulse.

Download full-text PDF

Source
http://dx.doi.org/10.1177/153303460500400615DOI Listing

Publication Analysis

Top Keywords

irreversible electroporation
12
cancer cell
12
cell ablation
12
ablation
8
ablation irreversible
8
electroporation ire
8
electrical pulses
8
ire ablation
8
ablation domain
8
complete cancer
8

Similar Publications

Misfolding of the cellular PrP (PrP) protein causes prion disease, leading to neurodegenerative disorders in numerous mammalian species, including goats. A lack of PrP induces complete resistance to prion disease. The aim of this work was to engineer Alpine goats carrying knockout (KO) alleles of PRNP, the PrP-encoding gene, using CRISPR/Cas9-ribonucleoproteins and single-stranded donor oligonucleotides.

View Article and Find Full Text PDF

Lipid nanoparticles deliver DNA-encoded biologics and induce potent protective immunity.

Mol Cancer

January 2025

Department of Medicine, Section of Epidemiology and Population Sciences, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA.

Lipid nanoparticles (LNPs) for mRNA delivery have advanced significantly, but LNP-mediated DNA delivery still faces clinical challenges. This study compared various LNP formulations for delivering DNA-encoded biologics, assessing their expression efficacy and the protective immunity generated by LNP-encapsulated DNA in different models. The LNP formulation used in Moderna's Spikevax mRNA vaccine (LNP-M) demonstrated a stable nanoparticle structure, high expression efficiency, and low toxicity.

View Article and Find Full Text PDF

Agrobacterium-mediated gene transformation method is a vital molecular biology technique employed to develop transgenic plants. Plants are genetically engineered to develop disease-free varieties, knock out unsettling traits for crop improvement, or incorporate an antigenic protein to make the plant a green factory for edible vaccines. The method's robustness was validated through successful transformations, demonstrating its effectiveness as a standard approach for researchers working in plant biotechnology.

View Article and Find Full Text PDF

Presently, the in vitro recording of intracellular neuronal signals on microelectrode arrays (MEAs) requires complex 3D nanostructures or invasive and approaches such as electroporation. Here, it is shown that laser poration enables intracellular coupling on planar electrodes without damaging neurons or altering their spontaneous electrophysiological activity, allowing the process to be repeated multiple times on the same cells. This capability distinguishes laser-based neuron poration from more invasive methods like electroporation, which typically serve as endpoint measurement for cells.

View Article and Find Full Text PDF

The primary method of treatment for patients suffering from drug-resistant focal-onset epilepsy is resective surgery, which adversely impacts neurocognitive function. Radio frequency (RF) ablation and laser ablation are the methods with the most promise, achieving seizure-free rates similar to resection but with less negative impact on neurocognitive function. However, there remains a number of concerns and open technical questions about these two methods of thermal ablation, with the primary ones: (1) heating; (2) hemorrhage and bleeding; and (3) poor directionality.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!