This study was designed to assess a new composite implant to induce regeneration of injured spinal cord in paraplegic rats following complete cord transection. Neuronal xenogeneic cells from biopsies of adult nasal olfactory mucosa (NOM) of human origin, or spinal cords of human embryos, were cultured in two consecutive stages: stationary cultures in a viscous semi-solid gel (NVR-N-Gel) and in suspension on positively charged microcarriers (MCs). A tissue-engineered tubular scaffold, containing bundles of parallel nanofibers, was developed. Both the tube and the nanofibers were made of a biodegradable dextran sulphate-gelatin co-precipitate. The suturable scaffold anchored the implant at the site of injury and provided guidance for the regenerating axons. Implants of adult human NOM cells were implanted into eight rats, from which a 4 mm segment of the spinal cord had been completely removed. Another four rats whose spinal cords had also been transected were implanted with a composite implant of cultured human embryonic spinal cord cells. Eight other cord-transected rats served as a control group. Physiological and behavioral analysis, performed 3 months after implantation, revealed partial recovery of function in one or two limbs in three out of eight animals of the NOM implanted group and in all the four rats that were implanted with cultured human embryonic spinal cord cells. Animals of the control group remained completely paralyzed and did not show transmission of stimuli to the brain. The utilization of an innovative composite implant to bridge a gap resulting from the transection and removal of a 4 mm spinal cord segment shows promise, suggesting the feasibility of this approach for partial reconstruction of spinal cord lesions. Such an implant may serve as a vital bridging station in acute and chronic cases of paraplegia.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3489403PMC
http://dx.doi.org/10.1007/s00586-005-0981-8DOI Listing

Publication Analysis

Top Keywords

spinal cord
24
composite implant
16
spinal
8
spinal cords
8
cultured human
8
human embryonic
8
embryonic spinal
8
cord cells
8
control group
8
cord
7

Similar Publications

Objectives: Rehabilitation services are crucial for improving the quality of life and overall health of individuals with spinal cord injuries (SCIs). However, access to adequate rehabilitation remains limited in many regions, including Iran. This study aims to explore the barriers faced by individuals with SCIs in accessing appropriate rehabilitation services within Golestan province, northern of Iran.

View Article and Find Full Text PDF

Congenital scoliosis presenting in teenage years outcomes without hemivertebra excision.

Spine Deform

January 2025

Department of Orthopaedics, Spinal Deformity and Pediatric Orthopaedics, Billie and George Ross Center for Advanced Pediatric Orthopaedics and Minimally Invasive Spinal Surgery, Cohen Children's Medical Center, Northwell Hofstra School of Medicine, 7 Vermont Drive, Lake Success, NY, 11042, USA.

Purpose: In congenital scoliosis, the surgical strategy approach of hemivertebra excision, with or without instrumentation and fusion, is a common approach to correction of scoliosis. However, hemivertebra excisions are technically challenging, with potential complications including spinal cord injury, nerve root injury and cerebrospinal fluid leak. The purpose of this study was to determine whether correction of congenital scoliosis can be achieved using a posterior instrumentation/fusion-only approach without the need for hemivertebra excision.

View Article and Find Full Text PDF

Ferroptosis is one of the cell death programs occurring after spinal cord injury (SCI) and is driven by iron-dependent phospholipid peroxidation. However, little is known about its underlying regulation mechanism. The present study demonstrated that lipid peroxidation was promoted in patients with SCI.

View Article and Find Full Text PDF

Lower urinary tract symptoms (LUTS) significantly affect patient quality of life. Treatment options for bladder outlet obstruction (BOO) due to benign prostatic hyperplasia (BPH) (a common cause of LUTS) are insufficient to relieve discomfort. As the incidence of BPH is increasing, new pharmacological targets for LUTS treatment are required.

View Article and Find Full Text PDF

Creating durable, motion-compliant neural interfaces is crucial for accessing dynamic tissues under in vivo conditions and linking neural activity with behaviors. Utilizing the self-alignment of nano-fillers in a polymeric matrix under repetitive tension, here, we introduce conductive carbon nanotubes with high aspect ratios into semi-crystalline polyvinyl alcohol hydrogels, and create electrically anisotropic percolation pathways through cyclic stretching. The resulting anisotropic hydrogel fibers (diameter of 187 ± 13 µm) exhibit fatigue resistance (up to 20,000 cycles at 20% strain) with a stretchability of 64.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!