Both vertebrate and invertebrate motor neurons can display bistable behavior in which self-sustained tonic firing results from a brief excitatory stimulus. Induction of the bistability is usually dependent on activation of intrinsic conductances located in the somatodendritic area and is commonly sensitive to action of neuromodulators. We have observed bistable behavior in a neuromuscular preparation from the foregut of the crab Cancer borealis that consists of the gastric mill 4 (gm4) muscle and the nerve that innervates it, the dorsal gastric nerve (dgn). Nerve-evoked contractions of enhanced amplitude and long duration (>30 s) were induced by extracellular stimulation when the stimulus voltage was above a certain threshold. Intracellular and extracellular recordings showed that the large contractions were accompanied by persistent firing of the dorsal gastric (DG) motor neuron that innervates gm4. The persistent firing could be induced only by stimulating a specific region of the axon and could not be triggered by depolarizing the soma, even at current amplitudes that induced high-frequency firing of the neuron. The bistable behavior was abolished in low-Ca2+ saline or when nicardipine or flufenamic acid, blockers of L-type Ca2+ and Ca2+-activated nonselective cation currents, respectively, was applied to the axonal stimulation region of the dgn. Negative immunostaining for synapsin and synaptotagmin argued against the presence of synaptic/modulatory neuropil in the dgn. Collectively, our results suggest that bistable behavior in a motor neuron can originate in the axon and may not require the action of a locally released neuromodulator.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/jn.00893.2005 | DOI Listing |
Nat Commun
January 2025
Department of Condensed Matter Physics, University of Zaragoza, Zaragoza, Spain.
Recent studies have shown that novel collective behaviors emerge in complex systems due to the presence of higher-order interactions. However, how the collective behavior of a system is influenced by the microscopic organization of its higher-order interactions is not fully understood. In this work, we introduce a way to quantify the overlap among the hyperedges of a higher-order network, and we show that real-world systems exhibit different levels of intra-order hyperedge overlap.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Organic Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovičova 6, Bratislava SK-842 15, Slovakia.
The development of new photochromic systems is motivated by the possibility of controlling the properties and functions of materials with high spatial and temporal resolution in a reversible manner. While there are several classes of photoswitches operating in solution, the design of systems efficiently operating in the solid state remains highly challenging, mainly due to limitations related to confinement effects. Triaryl-hydrazones represent a relatively new subclass of bistable hydrazone photoswitches exhibiting efficient / photochromism in solution.
View Article and Find Full Text PDFFront Neurosci
December 2024
Stress Neurobiology Laboratory, Division of Basic Neuroscience, McLean Hospital, Belmont, MA, United States.
The expression of GABARs goes through large scale, evolutionarily conserved changes through the early postnatal period. While these changes have been well-studied in brain regions such as the hippocampus and sensory cortices, less is known about early developmental changes in other brain areas. The nucleus accumbens (NAc) is a major hub in the circuitry that mediates motivated behaviors and disruptions in NAc activity is a part of the neuropathology observed in mood and substance use disorders.
View Article and Find Full Text PDFNanotechnology
January 2025
University Lille, CNRS, University Polytechnique Hauts-de-France, UMR 8520-IEMN-Institut d'Electronique de Microélectronique et de Nanotechnologie, F-59000 Lille, France.
We report here the reversibility and bistability of the switching behavior in an azobenzene derivative induced by the bias applied by a scanning-tunneling microscopy (STM) tip, at low temperature and in ultra-high vacuum environment. Thisto-andto-switching were observed during STM imaging in either polarity at +2 V or -2 V, on a sub-second time scale. This results in a blinking effect visible on STM images, corresponding to the reversible switching of the azobenzene molecule under the applied STM bias through an electric field induced process.
View Article and Find Full Text PDFAdv Mater
December 2024
Institute of Solid Mechanics, Beihang University, Beijing, 100191, China.
The physical reprogrammability of metamaterials provides unprecedented opportunities for tailoring changeable mechanical behaviors. It is envisioned that metamaterials can actively, precisely, and rapidly reprogram their performances through digital interfaces toward varying demands. However, on-demand reprogramming by integration of physical and digital merits still remains less explored.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!