In vivo imaging of MADS-box transcription factor interactions.

J Exp Bot

Business Unit Bioscience, Plant Research International, PO Box 16, 6700 AA Wageningen, The Netherlands.

Published: April 2006

MADS-box transcription factors are major regulators of development in flowering plants. The factors act in a combinatorial manner, either as homo- or heterodimers, and they control floral organ formation and identity and many other developmental processes through a complex network of protein-protein and protein-DNA interactions. Despite the fact that many studies have been carried out to elucidate MADS-box protein dimerization by yeast systems, very little information is available on the behaviour of these molecules in planta. Here, evidence for specific interactions between the petunia MADS-box proteins FBP2, FBP11, and FBP24 is provided in vivo. The dimers identified in yeast for the ovule-specific FBP24 protein have been confirmed in living plant cells by means of fluorescence resonance energy transfer-fluorescence lifetime imaging microscopy and, in addition, some of the most likely, less stable homo- and heterodimers were identified. This in vivo approach revealed that particular dimers could only be detected in specific sub-nuclear domains. In addition, evidence for the in planta assembly of these ovule-specific MADS-box transcription factors into higher-order complexes is provided.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jxb/erj011DOI Listing

Publication Analysis

Top Keywords

mads-box transcription
12
transcription factors
8
homo- heterodimers
8
mads-box
5
vivo imaging
4
imaging mads-box
4
transcription factor
4
factor interactions
4
interactions mads-box
4
factors major
4

Similar Publications

Wheat breeders are constantly looking for genes and alleles that increase grain yield. One key strategy is finding new genetic resources in the wild and domesticated gene pools of related species with genes affecting grain size. This study explored a natural population of Triticum turgidum (L.

View Article and Find Full Text PDF

Tartary buckwheat is a nutrient-rich pseudo-cereal whose starch contents, including amylose and amylopectin contents, and their properties hold significant importance for enhancing yield and quality. The granule-bound starch synthase (GBSS) is a key enzyme responsible for the synthesis of amylose, directly determining the amylose content and amylose-to-amylopectin ratio in crops. Although one has already been cloned, the genes at the genome-wide level have not yet been fully assessed and thoroughly analyzed in Tartary buckwheat.

View Article and Find Full Text PDF

Transcriptomics and Plant Hormone Analysis Reveal the Mechanism of Branching Angle Formation in Tea Plants ().

Int J Mol Sci

January 2025

National Centre for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou 310008, China.

The branching angle of tea plants is a key factor in determining their branching structure, which significantly affects yield, suitability for mechanical harvesting, and overall plant architecture. However, the mechanisms underlying branching angle formation in tea plants remain unclear. In this study, we explored the mechanism of branching angle formation in tea plants by analysing the transcriptome and plant hormone levels of tea plant cultivars with different branching angles.

View Article and Find Full Text PDF

The MADS-Box Transcription Factor EjAGL18 Negatively Regulates Malic Acid Content in Loquat by Repressing .

Int J Mol Sci

January 2025

Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing 400715, China.

Malic acid is the major organic acid in loquat fruit, contributing to the sourness of fruit and affecting fruit flavor. However, the transcriptional regulation of malic acid in loquat is not well understood. Here, we discovered a MADS-box transcription factor (TF), EjAGL18, that regulated malic acid accumulation in loquat.

View Article and Find Full Text PDF

The CsTIE1-CsAGL16 module regulates lateral branch outgrowth and drought tolerance in cucumber.

Hortic Res

January 2025

Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing 100193, China.

Drought stress and lateral branches are both important factors affecting crop yield. Cucumber is a widely planted vegetable crop that requires a large amount of water during its production and varieties with few lateral branches are preferred. However, the mechanisms regulating cucumber drought tolerance and lateral branch development remain largely unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!