It is largely unknown how growth slows and then stops in vivo. Similar to most organs, Drosophila imaginal discs undergo a fast, near-exponential growth phase followed by a slow growth phase before final target size is reached. We have used a genetic approach to study the role of an ABC-E protein, Pixie, in wing disc growth. pixie mutants, like mutants in ribosomal proteins genes (known as Minutes), show severe developmental delay with relatively mild alterations in final body size. Intriguingly, pixie mutant wing imaginal discs show complex regional and temporal defects in growth and cell survival that are compensated to result in near-normal final size. In S2 cells, Pixie, like its yeast homolog RLI1, is required for translation. However, a comparison of the growth of eukaryotic translation initiation factor eIF4A and pixie mutant clones in wing discs suggests that only a subset of translation regulators, including pixie, mediate regional differences in growth and cell survival in wing discs. Interestingly, some of the regional effects on pixie mutant clone growth are enhanced in a Minute background. Our results suggest that the role of Pixie is not merely to allow growth, as might be expected for a translation regulator. Instead, Pixie also behaves as a target of putative constraining signals that slow disc growth during late larval life. We propose a model in which a balance of growth inhibitors and promoters determines tissue growth rates and cell survival. An alteration in this balance slows growth before final disc size is reached.

Download full-text PDF

Source
http://dx.doi.org/10.1242/dev.02148DOI Listing

Publication Analysis

Top Keywords

cell survival
16
pixie mutant
16
growth
14
growth cell
12
wing discs
12
pixie
10
mutant wing
8
imaginal discs
8
growth phase
8
size reached
8

Similar Publications

Background: Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal diseases. Although several chemotherapy regimens have been developed over the past decades, few targeted therapies have shown a significant improvement in overall survival, partly due to the identification of PDAC as a single disease.

Methods: Combining metabolomic analysis and immunohistochemistry staining with Oil Red O staining, analysis for the oxygen consumption rate and extracellular acidification rate, we stratified pancreatic cancer cells into two subtypes.

View Article and Find Full Text PDF

In gastric cancer, the relationship between human epidermal growth factor receptor 2 (HER2), the cyclic GMP-AMP synthase-stimulator of the interferon genes (cGAS-STING) pathway, and autophagy remains unclear. This study examines whether HER2 regulates autophagy in gastric cancer cells via the cGAS-STING signaling pathway, influencing key processes such as cell proliferation and migration. Understanding this relationship could uncover new molecular targets for diagnosis and treatment.

View Article and Find Full Text PDF

Purpose: Receptor CUB-domain containing- protein 1 (CDCP1) was evaluated as a target for detection and treatment of breast cancer.

Experimental Design: CDCP1 expression was assessed immunohistochemically in tumors from 423 patients (119 triple-negative breast cancer (TNBC); 75 HER2+; 229 ER+/HER2- including 228 primary tumors, 229 lymph node and 47 distant metastases). Cell cytotoxicity induced in vitro by a CDCP1-targeting antibody-drug conjugate (ADC), consisting of the human/mouse chimeric antibody ch10D7 and the microtubule disruptor monomethyl auristatin E (MMAE), was quantified, including in combination with HER2-targeting ADC T-DM1.

View Article and Find Full Text PDF

Gastric cancer is an aggressive malignancy characterized by significant clinical heterogeneity arising from complex genetic and environmental interactions. This study employed single-cell RNA sequencing, using the 10 × Genomics platform, to analyze 262,532 cells from gastric cancer samples, identifying 32 distinct clusters and 10 major cell types, including immune cells (e.g.

View Article and Find Full Text PDF

Background: Clear cell renal cell carcinoma (ccRCC) is the most common subtype of kidney cancer with a high metastatic rate and high mortality rate. The molecular mechanism of ccRCC development, however, needs further study. Aurora kinase B (AURKB) functions as an important oncogene in various tumors; therefore, in the present study, we aimed to explore the mechanism by which AURKB affects ccRCC development.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!