The flowing nature and rheological properties of polymethyl methacrylate latex systems in a coaxial cylinder viscometer were studied on the basis of laminar shear flow model and rheological experimental data. The physical meaning of laminar viscosity (eta(i,j)) and zero shear viscosity (eta(0)) were described. We assumed that laminar shear flows depended on position and shear time, so microrheological parameters were the function of position and shear time. eta(i,j) was the viscosity of any shear sheet i between two neighboring laminar shear flows at time t; j was denoted as j=t/Deltat; and Deltat was the interacting time of two particles or two laminar shear flows. tau(i,j) and gamma(i,j) were shear stress and shear rate of any shear sheet i at j moment. According to Newton regulation tau(i,j)=eta(i,j)gamma(i,j), apparent viscosity eta(a) should be a statistically mean value of j shear sheets laminar viscosity at j moment, i.e., eta(a)= summation operator(i=j)eta(i,j)gamma(i,j)/ summation operator(i=j)gamma(i,j). eta(0) was defined as shear viscosity between a laminar shear flow and a still fluid surface, i.e., eta(0)=(tau(i,j)/gamma(i,j))(j-i-->0). These new ideas described above may be helpful in the study of the micromechanisms of latex particle systems and worthy of more research.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1006/jcis.2002.8375 | DOI Listing |
Sci Rep
January 2025
University of Ulsan, 93 Daehak-ro, Nam-gu, Ulsan, 680-749, Republic of Korea.
This study employed large eddy simulation (LES) with the wall-adapting local eddy-viscosity (WALE) model to investigate transitional flow characteristics in an idealized model of a healthy thoracic aorta. The OpenFOAM solver pimpleFoam was used to simulate blood flow as an incompressible Newtonian fluid, with the aortic walls treated as rigid boundaries. Simulations were conducted for 30 cardiac cycles and ensemble averaging was employed to ensure statistically reliable results.
View Article and Find Full Text PDFMicromachines (Basel)
December 2024
Department of Cardiovascular Medicine, Heart, Vascular & Thoracic Institute, Cleveland Clinic, Cleveland, OH 44195, USA.
Inferior vena cava (IVC) filters are vital in preventing pulmonary embolism (PE) by trapping large blood clots, especially in patients unsuitable for anticoagulation. In this study, the accuracy of two common simplifying assumptions in numerical studies of IVC filters-the rigid wall assumption and the laminar flow model-is examined, contrasting them with more realistic hyperelastic wall and turbulent flow models. Using fluid-structure interaction (FSI) and computational fluid dynamics (CFD) techniques, the investigation focuses on three hemodynamic parameters: time-averaged wall shear stress (TAWSS), oscillatory shear index (OSI), and relative residence time (RRT).
View Article and Find Full Text PDFNPJ Biofilms Microbiomes
January 2025
FLOW, Department of Engineering Mechanics, KTH, Stockholm, Sweden.
Biofilms constitute one of the most common forms of living matter, playing an increasingly important role in technology, health, and ecology. While it is well established that biofilm growth and morphology are highly dependent on the external flow environment, the precise role of fluid friction has remained elusive. We grew Bacillus subtilis biofilms on flat surfaces of a channel in a laminar flow at wall shear stresses spanning one order of magnitude (τ = 0.
View Article and Find Full Text PDFSoft Matter
January 2025
Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
Microfluidic chips are powerful tools for investigating numerous variables including chemical and physical parameters on protein aggregation. This study investigated the aggregation of bovine serum albumin (BSA) in two different systems: a vial-based static system and a microfluidic chip-based dynamic system in which BSA aggregation was induced successfully. BSA aggregation induced in a microfluidic chip on a timescale of seconds enabled a dynamic investigation of the forces driving the aggregation process.
View Article and Find Full Text PDFArterioscler Thromb Vasc Biol
February 2025
Department of Pediatrics (T.S., J.-R.M., Y.H.C., J.M.S., J. Kaplan, A.C., L.W., D.G., S.T., S.I., M.D., W.Y., A.L.M., M.R.).
Background: Computational modeling indicated that pathological high shear stress (HSS; 100 dyn/cm) is generated in pulmonary arteries (PAs; 100-500 µm) in congenital heart defects causing PA hypertension (PAH) and in idiopathic PAH with occlusive vascular remodeling. Endothelial-to-mesenchymal transition (EndMT) is a feature of PAH. We hypothesize that HSS induces EndMT, contributing to the initiation and progression of PAH.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!