Melt, hydration, and micellization of the PEO-PPO-PEO block copolymer studied by FTIR spectroscopy.

J Colloid Interface Sci

Young Scientist Laboratory of Separation Science and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Processing Engineering, Chinese Academy of Sciences, P.O. Box 353, Beijing, 100080, People's Republic of China.

Published: July 2002

Fourier transform infrared (FTIR) spectroscopy was used to study the conformational changes of the polyethylene oxide-polypropylene oxide-polyethylene oxide (PEO-PPO-PEO) block copolymer, Pluronic P104, in a large concentration range in a polymer-water system as a function of temperature. The melt in which the conformational transition of the PEO blocks occurs gives remarkable changes in the spectral behavior. A small amount of water in Pluronic P104 can induce the PEO block amorphism. The addition of more water only swells the PEO dominant region and gives no significant difference in the conformational structure of the block copolymer in the ordered phases of Pluronic P104-water mixtures. The PPO blocks of Pluronic P104 are hydrated only in a condition of lower temperature and higher water content. The temperature dependent micellization of Pluronic P104 in water was analyzed by a FTIR spectroscopic method. The appearance of the symmetric deformation band of the anhydrous methyl groups at temperature below the CMT indicates the existence of a hydrophobic microenvironment. The appearance of the symmetric deformation band of the hydrated methyl groups at higher temperatures indicates that the micellar core must contain some amount of water. The results of FTIR data show that the proportion of the anhydrous methyl groups increases and water content in the micellar core decreases during the micellization process.

Download full-text PDF

Source
http://dx.doi.org/10.1006/jcis.2002.8435DOI Listing

Publication Analysis

Top Keywords

pluronic p104
16
block copolymer
12
methyl groups
12
peo-ppo-peo block
8
ftir spectroscopy
8
amount water
8
water content
8
appearance symmetric
8
symmetric deformation
8
deformation band
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!