Apparent molar relative enthalpies were measured for the nonionic ethoxylated surfactant CH(3)-(CH(2))(5)-(OCH(2)-CH(2))(5)OH (C(6)E(5)) in aqueous solution at constant molality of the ionic surfactant CH(3)-(CH(2))(5)-SO(-)(3)Na(+)(C(6)SNa) at 25 degrees C. The experimental data obtained by a stepwise dilution process allowed evaluation of the C(6)E(5) first interaction parameter at several constant molalities of C(6)SNa. The C(6)E(5) critical micelle composition as a function of the C(6)SNa molality was also estimated. The experimental calorimetric data, together with the mixed micelles composition computed in the past by some of us [Ciccarelli et al., Langmuir 14, 7130 (1998)], allowed computation of the Deltah(Mic) of micellization. The experimental data are compared to those predicted by the ideal solution model and regular solution model of mixed micellization. From a calorimetric study performed on the water-hexanol-C(6)SNa and water-penthaethylene glycol-C(6)SNa model systems, it can be argued that the interactions among the hydrophilic heads in the C(6)E(5)-C(6)SNa mixed micelles prevail on the contribution of the hydrophobic tails in ruling the enthalpic properties of the system.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1006/jcis.2002.8280 | DOI Listing |
Int J Pharm
January 2025
National Advanced Medical Engineering Research Center, China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Shanghai 201203, China. Electronic address:
Lipid nanoparticle (LNP)-mediated RNA delivery holds significant potential for the treatment of various liver diseases. Ionizable lipids play a crucial role in the formulation of LNPs and directly influence their delivery efficiency. In this study, we introduced an innovative concept by incorporating an ether bond into the hydrophobic tail of ionizable lipids for the first time.
View Article and Find Full Text PDFLangmuir
January 2025
Polymer Science and Engineering Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India.
2,2-Bis-(methylol)propionic acid-based second-generation polyester dendron amphiphile (T-D) containing visible light-responsive donor-acceptor Stenhouse adduct (DASA) as hydrophobic tails is synthesized. Micelles of T-D amphiphile and its mixed micelles of varying compositions with nonresponsive dendron amphiphile containing lauryl groups are prepared in aqueous solution. In transmission electron microscopy and atomic force microscopy analyses, T-D amphiphiles show rice grain-like ellipsoidal micelles as the predominant morphology.
View Article and Find Full Text PDFJ Med Chem
January 2025
Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea.
Carbonic anhydrases (CAs) IX and XII are crucial for the survival and metastasis of solid tumors under hypoxic conditions. We designed compounds -, integrating triazole and benzenesulfonamide scaffolds known for inhibiting tumor-associated CAs IX/XII. Initial synthesis included compounds -, followed by diversification with small hydrophobic groups (-) and hydrophilic heterocyclic secondary amines (-).
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Université Paris Est Creteil, CNRS, Institut Chimie et Matériaux Paris Est, UMR 7182, 2 Rue Henri Dunant, 94320 Thiais, France. Electronic address:
In the present investigation, redox-responsive-based dextran carriers were developed for the controlled release of hydrophobic molecules via a reducing agent naturally present in cells, namely glutathione. In this sense, dextran was modified with a thiol derivative. The roles of the hydrophilic segments in the molecular self-organisation of polysaccharide derivatives into nanoparticles were investigated by varying the average dextran molar mass.
View Article and Find Full Text PDFMolecules
December 2024
Department of Chemistry & Chemical Biology, The University of New Mexico, Albuquerque, NM 87131, USA.
Tetrodotoxin (TTX), a potent Site-1 sodium channel blocker (S1SCB), offers highly effective local anesthetic properties with minimal addiction potential. To fully leverage TTX's capabilities as a local anesthetic, it is crucial to develop a drug delivery system that balances its systemic toxicity with its therapeutic efficacy. Recent studies have shown that peptide mixtures, derived from fragments of Site-1 sodium channel proteins and enhanced with hydrophobic tails (designated MP1 and MP2), can self-assemble into nanostructures that exhibit remarkable sustained-release capabilities for TTX.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!