A direct synthetic route leading to titania particles dispersed on nonporous spherical silica particles has been investigated; 5, 10, and 20% (w/w) titania/silica sols mixtures were achieved via hydrolyzation of titanium tetra-isopropxide solution in the mother liquor of a freshly prepared sol of spherical silica particles (Stöber particles). Titania/silica materials were produced by subsequent drying and calcination of the xerogels so obtained for 3 h at 400 and 600 degrees C. The materials were investigated by means of thermal analyses (TGA and DSC), FT-IR, N(2) gas adsorption-desorption, powder X-ray diffraction (XRD), and transmission electron microscopy (TEM). In spite of the low surface area (13.1 m(2)/g) of the pure spherical silica particles calcined at 400 degrees C, high surface area and mesoporous texture titania/silica materials were obtained (e.g., S(BET) ca. 293 m(2)/g for the 10% titania/silica calcined at 400 degrees C). Moreover, the materials were shown to be amorphous toward XRD up to 600 degrees C, while reasonable surface areas were preserved. It has been concluded that dispersion of titania particles onto the surface of the nonporous spherical silica particles increase their roughness, therefore leading to composite materials of less firm packing and mesoporosity.

Download full-text PDF

Source
http://dx.doi.org/10.1006/jcis.2002.8268DOI Listing

Publication Analysis

Top Keywords

spherical silica
20
silica particles
20
surface area
12
high surface
8
composite materials
8
particles
8
titania particles
8
nonporous spherical
8
titania/silica materials
8
600 degrees
8

Similar Publications

This study investigates the synthesis of ZnSnO@SiO@5-FU nanoparticles as an additive for bone fillers in dental maxillofacial reconstruction. ZnSnO nanoparticles were synthesized and coated with a SiO shell, followed by the incorporation of 5-Fluorouracil (5-FU), aimed at enhancing the therapeutic properties of classical fillers. Structural analysis using X-ray diffraction confirmed that ZnSnO was the single crystalline phase present, with its crystallinity preserved after both SiO coating and 5-FU incorporation.

View Article and Find Full Text PDF

Plasmonic nanomaterials are effective photoacoustic (PA) contrast agents with diverse biomedical applications. While silica coatings on gold nanoparticles (AuNPs) have been demonstrated to increase PA efficiency, the underlying mechanism remains elusive. Here, we systematically investigated the impact of silica coatings on PA generation under picosecond and nanosecond laser pulses.

View Article and Find Full Text PDF

Synthesis of anisotropic silica nanoparticles by organic amine with diverse structures.

Nanotechnology

January 2025

School of Chemical Science and Engineering, Tongji University, Shanghai, People's Republic of China.

Herein, we synthesized anisotropic silica nanoparticles (AISNPs) with organic amines with different structures. Monoamines and diamines with distance between amine groups shorter than4 Å have been observed to facilitate the formation of isotropic silica nanoparticles (ISNPs). AISNPs were synthesized with diamines with distance between amine groups longer than4 Å and linear structures of triamines.

View Article and Find Full Text PDF

We report the design and development of a novel multifunctional nanostructure, RB-AuSiO_HSA-DOX, where tri-modal cancer treatment strategies-photothermal therapy (PTT), photodynamic therapy (PDT), chemotherapy-luminescent properties and targeting are integrated into the same scaffold. It consists of a gold core with optical and thermo-plasmonic properties and is covered by a silica shell entrapping a well-known photosensitizer and luminophore, Rose Bengal (RB). The nanoparticle surface was decorated with Human Serum Albumin (HSA) through a covalent conjugation to confer its targeting abilities and as a carrier of Doxorubicin (DOX), one of the most effective anticancer drugs in clinical chemotherapy.

View Article and Find Full Text PDF

Fast and Sensitive Detection of Anti-SARS-CoV-2 IgG Using SiO@Au@CDs Nanoparticle-Based Lateral Flow Immunoassay Strip Coupled with Miniaturized Fluorimeter.

Biomolecules

December 2024

School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai 264005, China.

The development of a novel strategy for the measurement of SARS-CoV-2 IgG antibodies is of vital significance for diagnosis and effect of vaccination evaluation. In this investigation, an SiO@Au@CDs nanoparticle (NP)-based lateral flow immunoassay (LFIA) strip was fabricated and coupled with a miniaturized fluorimeter. The morphology features and particle sizes of the SiO@Au@CDs NPs were characterized carefully, and the results indicated that the materials possess monodisperse, uniform, and spherical structures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!