Deintercalation of hydrazine-intercalated kaolinite in dry and moist air.

J Colloid Interface Sci

Centre for Instrumental and Developmental Chemistry, Queensland University of Technology, 2 George Street, G.P.O. Box 2434, Brisbane, Queensland 4001, Australia.

Published: February 2002

The deintercalation of hydrazine-intercalated kaolinite has been followed using a combination of X-ray diffraction and diffuse reflectance Fourier transform infrared spectroscopy. Upon intercalation of the kaolinite with hydrazine, the kaolinite layers are expanded to 10.66 A and remain expanded for up to 22 h upon exposure to moist air. Only upon deintercalation are the peak at 10.39 A and a minor peak at 9.6 A observed. Complete deintercalation takes up to 18 days more. Upon intercalation with hydrazine an intense band is observed at 3628 cm(-1) and is attributed to the inner-surface hydroxyls hydrogen bonded to the hydrazine, which upon deintercalation decreased in intensity. This rate of deintercalation is affected by the presence or absence of moist air. Deintercalation in the presence of water vapor results in the observation of two additional bands at 3550 and 3598 cm(-1), which are attributed to the hydroxyl stretching modes of adsorbed water during deintercalation. The intensity of NH stretching vibrations observed at 3360, 3300, and 3200 cm(-1) also decrease in intensity with deintercalation time. Changes in the hydroxyl deformation modes of kaolinite in the 915 cm(-1) region and in the HNH deformation modes show strong interactions between the kaolinite surface and the inserting hydrazine molecule.

Download full-text PDF

Source
http://dx.doi.org/10.1006/jcis.2001.8011DOI Listing

Publication Analysis

Top Keywords

moist air
12
air deintercalation
12
deintercalation
9
deintercalation hydrazine-intercalated
8
hydrazine-intercalated kaolinite
8
cm-1 attributed
8
deintercalation presence
8
deformation modes
8
kaolinite
6
kaolinite dry
4

Similar Publications

Revealing Stachybotrys-like fungal growth in buildings - Possible exposure highlighted through three case studies.

Sci Total Environ

January 2025

Department of Civil Engineering, Aalto University, 00076 Espoo, Finland; International Laboratory for Air Quality and Health, Faculty of Science, School of Earth & Atmospheric Sciences, Queensland University of Technology, 2 George Street, Brisbane, QLD 4000, Australia. Electronic address:

Genus Stachybotrys (Stachybotryaceae, Hypocreales) requires high humidity to grow and represents one of the most notorious fungi associated with suspected illness in moist buildings. If Stachybotrys conidia are found in settled indoor dusts, their presence may indicate water intrusion and mold infestation revealed after dismantling the building structures. This study describes detection of Stachybotrys growth hidden inside the structures of three buildings in Finland.

View Article and Find Full Text PDF

Is the Reaction Rate Coefficient for OH + HO → HO + O Dependent on Water Vapor?

JACS Au

December 2024

Department of Meteorology and Atmospheric Science, Pennsylvania State University, University Park, Pennsylvania 16802, United States.

A critical reaction affecting the oxidation chemistry in the middle-to-upper atmosphere occurs between hydroxyl (OH) and hydroperoxyl (HO). The reaction rate coefficient for OH + HO → HO + O, here called , has challenged laboratory kineticists for 50 years. However, several measurements from the past 30 years had approached a rough consensus until the publication of a new study that examined, for the first time, the water vapor dependence of this reaction.

View Article and Find Full Text PDF

Atmospheric rivers cause warm winters and extreme heat events.

Nature

December 2024

Yale University, Department of Earth and Planetary Sciences, New Haven, CT, USA.

Atmospheric rivers (ARs) are narrow regions of intense water vapour transport in the Earth's atmosphere. These transient phenomena carry water from the subtropics to the mid-latitudes and polar regions, making up the majority of polewards moisture transport and exerting control on the precipitation and water resources in many regions. In addition to transporting moisture, ARs also transport heat, but the impact of this transport on global near-surface air temperatures has not yet been characterized.

View Article and Find Full Text PDF

A review of short-term weather impacts on honey production.

Int J Biometeorol

December 2024

Institute of Geography and Earth Sciences, Department of Meteorology, ELTE Eötvös Loránd University, Budapest, Hungary.

Beekeeping is an exceptionally weather-sensitive agricultural field. Honey production and pollination services depend on the complex interaction of plants and bees, both of which are impacted by short-term weather changes. In this review, classical and recent research is collected to provide an overview on short-term atmospheric factors influencing honey production, and the optimal and critical weather conditions for bee activity.

View Article and Find Full Text PDF

Mpox Outbreak in Previously Non-Endemic Countries: A Review on Impact on Asia.

Clin Pathol

November 2024

Department of Medicine, Faculty of Medical Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda, Sri Lanka.

Mpox (human mpox) is an opportunistic viral zoonosis that bears a strong resemblance to smallpox. The virus is divided into 2 distinct clades, clade I and clade II, which were originally confined to the moist forest regions of Africa. However, due to air travel and the exotic pet trade, these clades have spread globally.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!