The principal goals of this study were to establish a quantitative morphological analysis of spatial and regional properties of dense core vesicles, and to use this analysis to assess whether homotypic fusion is prominent in chronically treated PC-12 cells at elevated release levels. Simple computerized image processing of electron-micrographs provided the binary images of vesicular dense cores, whilst the artificial intelligence methods were needed to determine the vesicular membranes. As in the past, the presence of large, highly irregular vesicles, provided the morphological evidence of fused vesicles, but the irregularity of vesicular shape was assessed quantitatively-from its roundness. Free space of each vesicle was determined from the distance to its nearest-neighbor, or from the size of its Voronoi polygon. Within a Voronoi polygon, each point is closer to that vesicle than to any other vesicle. Large vesicles were not less round and did not have larger free space, as expected if they result from fusion of several smaller vesicles. In conclusion, we present a novel and rigorous morphological analysis of spatial and regional properties of dense core vesicles. The results demonstrate that the homotypic fusion is not prominent in PC-12 cells, before or following a chronic treatment that enhances release.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jneumeth.2005.10.003 | DOI Listing |
Gen Physiol Biophys
January 2025
Shanghai University of Traditional Chinese Medicine, Shenzhen Hospital, Shenzhen, Guangdong, China.
Cerebral ischemia-reperfusion (I/R) is a serious complication in patients with ischemic stroke. Senkyunolide A (SenA) can alleviate neuronal cell damage induced by cerebral I/R; however, the exact action mechanism remains unclear. An in vitro cellular injury model was established by inducing PC-12 cells with OGD/R.
View Article and Find Full Text PDFJ Nanobiotechnology
January 2025
Department of Orthopedics, Zhuhai Medical College (Zhuhai People's Hospital), State Key Laboratory of Bioactive Molecules and Druggability Assessment, College of Chemistry and Materials Science, Jinan University, Zhuhai, 519000, China.
Spinal cord injury (SCI) is a critical condition affecting the central nervous system that often has permanent and debilitating consequences, including secondary injuries. Oxidative damage and inflammation are critical factors in secondary pathological processes. Selenium nanoparticles have demonstrated significant antioxidative and anti-inflammatory properties via a non-immunosuppressive pathway; however, their clinical application has been limited by their inadequate stability and functionality to cross the blood-spinal cord barrier (BSCB).
View Article and Find Full Text PDFTissue Cell
January 2025
Department of Neurology, Chonggang General Hospital, Chongqing 400081, China.
Parkinson's disease (PD) is a type of chronic neurodegenerative disorder. There is an ongoing need for the development of new medications to address this illness. Loureirin C is known to have a protective impact on neurological disorders.
View Article and Find Full Text PDFTissue Cell
January 2025
Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran. Electronic address:
Malignant pheochromocytomas are infrequent tumors that have a poorer prognosis compared to their benign counterparts. The administration of chemotherapy to patients with pheochromocytoma can result in adverse side effects and a reduced life quality. Alternative and more targeted treatment strategies, such as gene therapy significantly improve the patients' survival rate and life expectancy.
View Article and Find Full Text PDFPharmaceutics
December 2024
Scientific and Educational Center of Pharmaceutics, Kazan (Volga Region) Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia.
The combination of macroporous cryogels with synthetic peptide factors represents a promising but poorly explored strategy for the development of extracellular matrix (ECM)-mimicking scaffolds for peripheral nerve (PN) repair. In this study, IKVAV peptide was functionalized with terminal lysine residues to allow its in situ cross-linking with gelatin macromer, resulting in the formation of IKVAV-containing proteinaceous cryogels. The controllable inclusion and distribution of the peptide molecules within the scaffold was verified using a fluorescently labelled peptide counterpart.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!