Inhibition of GABA shunt enzymes' activity by 4-hydroxybenzaldehyde derivatives.

Bioorg Med Chem Lett

Institute of Materia Medica, College of Life Science and Technology, Huazhong University of Science and Technology, 430074 Wuhan, China.

Published: February 2006

4-Hydroxybenzaldehyde (HBA) derivatives were examined as inhibitors for GABA transaminase (GABA-T) and succinic semialdehyde dehydrogenase (SSADH). Investigation of structure-activity relation revealed that a carbonyl group or an amino group as well as a hydroxy group at the para position of the benzene ring are important for both enzymes' inhibition. HBA was shown to give competitive inhibition of GABA-T with respect to alpha-ketoglutarate and competitive inhibition of SSADH. 4-Hydroxybenzylamine (HBM) also showed the competitive inhibition on GABA-T with respect to GABA. In conclusion, the inhibitory effects of HBA and HBM on both enzymes could result from the similarity between both molecules and the two enzymes' substrates in structure, as well as the conjugative effect of the benzene ring. This suggested that the presence of the benzene ring may be accepted by the active site of both enzymes, HBA and HBM may be considered as lead compounds to design novel GABA-T inhibitors.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmcl.2005.10.040DOI Listing

Publication Analysis

Top Keywords

benzene ring
12
competitive inhibition
12
inhibition gaba-t
8
gaba-t respect
8
hba hbm
8
inhibition
5
inhibition gaba
4
gaba shunt
4
shunt enzymes'
4
enzymes' activity
4

Similar Publications

Sensitive fluorescence turn-on sensing of hydroxyl radical and glucose based on the oxidative degradation of reductive organic cage.

Talanta

January 2025

College of Chemistry and Materials Science, Hunan Engineering Research Center for Monitoring and Treatment of Heavy Metals Pollution in the Upper Reaches of Xiangjiang River, Hengyang Normal University, Hengyang, 421001, China. Electronic address:

The accurate and sensitive quantification of hydroxyl radical (·OH) and glucose is necessary for disease diagnosis and health guidance, but still challenging owing to the low concentration of ·OH and poor water solubility of fluorescent probes. In addition, fluorescent probes may cause secondary pollution to the environment. Here an organic cage was reported as a sensitive fluorescent probe for ·OH and glucose in aqueous solution without serious secondary pollution.

View Article and Find Full Text PDF

Magnetically Induced Current-Density Susceptibility of Circum[]coronenes.

J Phys Chem A

January 2025

Department of Chemistry, Faculty of Science, University of Helsinki, P.O. Box 55, A. I. Virtasen aukio 1, Helsinki FIN-00014, Finland.

We have calculated the magnetically induced current density (MICD) susceptibility at the all-electron density functional theory level for a series of coronoid molecules of increasing size and compared the MICD susceptibilities with those calculated using the pseudo-π (PP) model. The molecules sustain global diatropic magnetically induced ring currents (MIRCs), whereas paratropic MICD vortices mainly appear inside the benzene rings. The computationally cheaper PP calculations were also employed on circum[]coronene molecules showing that the MICD pattern continues to alternate for odd and even when increasing the size of the molecule.

View Article and Find Full Text PDF

Taking the natural product cerbinal as the lead compound, 30 novel 5-aryl-cyclopenta[]pyridine derivatives were designed and synthesized based on the previous bioactivity studies of the cyclopenta[]pyridines. The modification of the position-5 of compound was achieved by amination, bromination, and cross coupling using cerbinal as the raw material. The results of the bioactivity tests demonstrated that partial compounds exhibited superior activity against plant viruses compared to compound .

View Article and Find Full Text PDF

Structure-Function Analysis of CYP105A1 in the Metabolism of Nonsteroidal Anti-inflammatory Drugs.

Biochemistry

January 2025

Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan.

CYP105A1 exhibits monooxygenase activity to a wide variety of structurally different substrates with regio- and stereospecificity, making its application range broad. Our previous studies have shown that CYP105A1 wild type and its variants metabolize 12 types of nonsteroidal anti-inflammatory drugs (NSAIDs). In particular, the R84A variant exhibited a high activity against many NSAIDs.

View Article and Find Full Text PDF

The self-assembly of hydrophobic organic phototherapeutic agents (OPTAs) with expansive planar structures into nanoparticles (NPs) represents a pivotal strategy to bolster their biocompatibility. However, the tight molecular packing within these NPs significantly influences the generation of reactive oxygen species (ROS) and the photothermal conversion efficiency (PCE), posing a substantial hurdle to elevating the efficacy of photodynamic therapy (PDT) and photothermal therapy (PTT) for such NPs. In this article, three OPTAs by donor engineering are synthesized.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!