A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Covalent immobilization of RGDS on hydrogel surfaces to direct cell alignment and migration. | LitMetric

Covalent immobilization of RGDS on hydrogel surfaces to direct cell alignment and migration.

J Control Release

Rice University, Department of Bioengineering, Houston, TX 77251-1892, USA.

Published: December 2005

This study extends the capability for directing cell behavior using PEG-based hydrogels in tissue-engineering applications to include control over the spatial distribution of the adhesive peptide, RGDS. A continuous linear gradient was formed by simultaneously using a gradient maker to combine precursor solutions and using photopolymerization to lock the RGDS gradient in place. Hydrogels containing entrapped gradients of bovine serum albumin (BSA) were characterized using Coomassie brilliant blue stain, which indicated that BSA concentration increases along the hydrogel's length and that the steepness of the gradient's slope can be varied by changing the relative BSA concentrations in the precursor solutions. Human dermal fibroblasts responded to covalently immobilized RGDS gradients by changing their morphology to align in the direction of increasing RGDS concentration. After 24 h, approximately 46% of fibroblasts were aligned with the RGDS-gradient axis. This proportion of cells further increased to approximately 53% (p < 0.05) and approximately 58% after 48 and 96 h, respectively. Also, fibroblasts migrated differentially depending on the concentration of RGDS. Fibroblasts migrated approximately 48% further going up the concentration gradient (0 to 6 micromol/ml PEG-RGDS) than going down the concentration gradient. Migration up the concentration gradient was also approximately 33% greater than migration on control surfaces with a constant concentration of RGDS (2 micromol/ml), while migration down the gradient was reduced approximately 12% relative to the control surface. In addition, directed migration was further enhanced by increasing the RGDS gradient's slope. This hydrogel system is expected to be useful for directing cell migration to enhance the formation of engineered tissues.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jconrel.2005.09.020DOI Listing

Publication Analysis

Top Keywords

concentration gradient
12
rgds
8
directing cell
8
precursor solutions
8
gradient's slope
8
increasing rgds
8
fibroblasts migrated
8
concentration rgds
8
going concentration
8
gradient
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!