The importance of physical activity in the development and maintenance of bone mineral density (BMD) is widely accepted. However, the effects on cortical BMD have not been clarified in detail. The present study examined bilateral asymmetries in cortical BMD of the tibia using peripheral quantitative computed tomography. Subjects comprised 37 young male athletes and 57 controls (age range, 18-28 years). BMD and geometrical indices were determined in bilateral tibiae. Cortical and trabecular BMD were calculated at the diaphysis and distal metaphysis, respectively. Cortical width, periosteal cross-sectional area, and cross-sectional moment of inertia were calculated using tomographic data of the tibial diaphysis. In athletes, the non-dominant leg showed greater cortical BMD than the dominant leg (mean difference, 5.42%; P < 0.0001). Cortical width and moment of inertia were also greater in the non-dominant leg. Periosteal area displayed no significant difference between legs. The control group exhibited similar results except for cortical BMD. No differences in trabecular BMD were noted between legs in either athletes or controls. These results implies the existence of mechanisms for the mechanical adaptation of cortical BMD. Dominant leg is used for mobility or manipulation whereas the non-dominant leg contributes to support the actions of the dominant leg. Loading differences in bilateral legs in young athletes might affect the remodeling rate leading to the side-to-side differences in cortical BMD.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bone.2005.10.002DOI Listing

Publication Analysis

Top Keywords

cortical bmd
24
non-dominant leg
12
dominant leg
12
cortical
10
bmd
10
side-to-side differences
8
differences cortical
8
bone mineral
8
mineral density
8
young male
8

Similar Publications

Prediction of hip fracture by high-resolution peripheral quantitative computed tomography in older Swedish women.

J Bone Miner Res

January 2025

Sahlgrenska Osteoporosis Centre, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden.

The socioeconomic burden of hip fractures, the most severe osteoporotic fracture outcome, is increasing and the current clinical risk assessment lacks sensitivity. This study aimed to develop a method for improved prediction of hip fracture by incorporating measurements of bone microstructure and composition derived from high-resolution peripheral quantitative computed tomography (HR-pQCT). In a prospective cohort study of 3028 community-dwelling women aged 75 to 80, all participants answered questionnaires and underwent baseline examinations of anthropometrics and bone by dual x-ray absorptiometry (DXA) and HR-pQCT.

View Article and Find Full Text PDF

High resolution peripheral quantitative computed tomography (HRpQCT) offers detailed bone geometry and microarchitecture assessment, including cortical porosity, but assessing chronic kidney disease (CKD) bone images remains challenging. This proof-of-concept study merges deep learning and machine learning to 1) improve automatic segmentation, particularly in cases with severe cortical porosity and trabeculated endosteal surfaces, and 2) maximize image information using machine learning feature extraction to classify CKD-related skeletal abnormalities, surpassing conventional DXA and CT measures. We included 30 individuals (20 non-CKD, 10 stage 3 to 5D CKD) who underwent HRpQCT of the distal and diaphyseal radius and tibia and contributed data to develop and validate four different AI models for each anatomical site.

View Article and Find Full Text PDF

: Sleeve gastrectomy (SG) is increasingly used to treat severe obesity in adolescents, but its effects on bone health during this critical period of bone accrual are not fully understood. This systematic review aims to evaluate the impact of SG on the bone mineral density (BMD), bone microarchitecture, marrow adipose tissue (MAT), and bone turnover markers in adolescents. : A comprehensive literature search was conducted to identify studies assessing bone health outcomes in adolescents undergoing SG.

View Article and Find Full Text PDF

Glucocorticoids on bone remodeling in systemic lupus erythematosus mice.

Pediatr Res

January 2025

Department of Nephrology, Rheumatology and Immunology, Shanghai Children's Hospital, School of medicine, Shanghai Jiao Tong University, Shanghai, China.

Background: Systemic lupus erythematosus requires glucocorticoids for management. This study investigates how glucocorticoids influence bone in a SLE mouse model, focusing on bone mineral density (BMD), microstructure, and remodeling markers.

Methods: MRL/lpr and C57BL/6 mice were administered dexamethasone or saline as a control for 4-weeks.

View Article and Find Full Text PDF

Chemerin, an adipocyte-secreted adipokine, can regulate bone resorption and bone formation and is a promising therapy for postmenopausal osteoporosis. However, the effect of endogenous chemerin on intraosseous vascular remodeling in postmenopausal osteoporosis remains unclear. In this study, we investigated the effect of chemerin on osteogenesis formation and intraosseous vascular remodeling in ovariectomized Rarres2 knockout (Rarres2) mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!