A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Cytotoxicity of novel derivatives of the spin trap EMPO. | LitMetric

Cytotoxicity of novel derivatives of the spin trap EMPO.

Bioorg Med Chem Lett

Research Institute of Biochemical Pharmacology and Molecular Toxicology, Veterinary University of Vienna, Veterinaerplatz 1, A-1210 Vienna, Austria.

Published: February 2006

Free radicals are involved in different regulatory and pathological processes. The formation of superoxide in living cells or whole organisms is of major interest. ESR spin trapping allows identification of the radicals if proper spin traps are available. Our study investigates the toxicity of novel derivatives of the spin trap EMPO to cultured human lung carcinoma cells (A549), breast carcinoma cells (SKBR3), colon carcinoma cells (SW480) as well as to human fibroblasts (F2000). A dose-dependent decrease of the cell number was observed for all spin traps. At 100mM BuMPO, t-BuMPO and s-BuMPO caused pronounced cell loss (>90%) and increased LDH-release, while DEPMPO, EMPO, PrMPO and i-PrMPO caused only moderate cell loss (<60%) without any effect on the LDH-release after 24h. At 10mM and 50mM the latter agents even decreased LDH-release. 10mM and 50mM of i-PrMPO as well as 10mM PrMPO increased intracellular GSH content acting like antioxidants, whereas 50mM s-BuMPO and PrMPO decreased GSH content by 67% and 38%, respectively. Staining for apoptotic nuclei did not reveal any differences between controls and treated cultures indicating necrotic cell death possibly due to membrane toxicity. The following toxicity ranking was obtained: t-BuMPO>BuMPO>s-BuMPO>PrMPO>i-PrMPO approximately DEPMPO approximately EMPO. The least toxic compounds were DEPMPO (LD(50)=143 mM for SW480, 117 mM for A549 or 277 mM for F2000) and i-PrMPO (LD(50)=114 mM for SKBR3), the most toxic one was t-BuMPO (LD(50)=5-6mM for all cell types). In conclusion, up to 50mM i-PrMPO (t(1/2)=18.8 min) and up to 10 mM s-BuMPO (t(1/2)=26.3 min) can be recommended for further investigation of superoxide in biological systems.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmcl.2005.10.060DOI Listing

Publication Analysis

Top Keywords

carcinoma cells
12
novel derivatives
8
derivatives spin
8
spin trap
8
trap empo
8
spin traps
8
cell loss
8
depmpo empo
8
spin
5
cytotoxicity novel
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!