A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Custom-designed high-density conformal planar multielectrode arrays for brain slice electrophysiology. | LitMetric

Multielectrode arrays have enabled electrophysiological experiments exploring spatio-temporal dynamics previously unattainable with single electrode recordings. The finite number of electrodes in planar MEAs (pMEAs), however, imposes a trade-off between the spatial resolution and the recording area. This limitation was circumvented in this paper through the custom design of experiment-specific tissue-conformal high-density pMEAs (cMEAs). Four configurations were presented as examples of cMEAs designed for specific stimulation and recording experiments in acute hippocampal slices. These cMEAs conformed in designs to the slice cytoarchitecture whereas their high-density provided high spatial resolution for selective stimulation of afferent pathways and current source density (CSD) analysis. The cMEAs have 50 or 60 microm center-to-center inter-electrode distances and were manufactured on glass substrates by photolithographically defining ITO leads, insulating them with silicon nitride and SU-8 2000 epoxy-based photoresist and coating the etched electrode tips with gold or platinum. The ability of these cMEAs to stimulate and record electrophysiological activity was demonstrated by recording monosynaptic, disynaptic, and trisynaptic field potentials. The conformal designs also facilitated the selection of the optimal electrode locations for stimulation of specific afferent pathways (Schaffer collaterals; medial versus lateral perforant path) and recording the corresponding responses. In addition, the high-density of the arrays enabled CSD analysis of laminar profiles obtained through sequential stimulation along the CA1 pyramidal tree.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jneumeth.2005.08.021DOI Listing

Publication Analysis

Top Keywords

multielectrode arrays
8
arrays enabled
8
spatial resolution
8
afferent pathways
8
csd analysis
8
cmeas
5
custom-designed high-density
4
high-density conformal
4
conformal planar
4
planar multielectrode
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!