The presence of citric acid in decontamination waste can cause complexation of the radioactive cations resulting in interferences in their removal by various treatment processes such as chemical precipitation, ion-exchange, etc., which are employed for the removal of radioactivity and may cause potential danger to the environment. Mesoporous Al-MCM-41 (Si/Al=30, 51, 72 and 97) and Si-MCM-41 molecular sieves were synthesized hydrothermally and characterized by XRD, BET (surface area) and FT-IR to evaluate the removal of citric acid through an adsorption process. Adsorption of citric acid over Al-MCM-41 shows the applicability of Freundlich and Langmuir isotherm and follows first order kinetics. The effects of contact time, concentration of citric acid, adsorbents (various Si/Al ratios of Al-MCM-41, Si-MCM-41, Hbeta zeolite and commercial carbon) and pH have been investigated. It has been found that the amount of citric acid adsorbed per unit gram of catalyst followed the order Al-MCM-41 (Si/Al=30)>Al-MCM-41 (Si/Al=51)>activated charcoal>Al-MCM-41 (Si/Al=72)>Al-MCM-41 (Si/Al=97)>Si-MCM-41>Hbeta zeolite.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2005.08.047 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!