Elimination of cytotoxic compounds in the early phases of drug discovery can save substantial amounts of research and development costs. An artificial neural network based approach using atomic fragmental descriptors has been developed to categorize compounds according to their in vitro human cytotoxicity. Fragmental descriptors were obtained from the Atomic7 linear logP calculation method implemented in Pallas PrologP program. We used cytotoxicity values obtained from an in-house screening campaign of a diverse set of 30,000 drug-like molecules. The training set included only the most and least toxic 12,998 compounds, however, cytotoxicity data for all compounds were used for validation. The proposed approach can be safely used for filtering out potentially cytotoxic candidates from the development pipeline before synthesis or assays during lead development or lead optimisation. The trained neural network misclassified less than 5% percent of the non-toxic and 9% of the toxic compounds.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bmcl.2005.10.079 | DOI Listing |
BMC Health Serv Res
January 2025
Department of Industrial Engineering, Dalhousie University, PO Box 15000, Halifax, B3H 4R2, NS, Canada.
Background: The growing demand for healthcare services challenges patient flow management in health systems. Alternative Level of Care (ALC) patients who no longer need acute care yet face discharge barriers contribute to prolonged stays and hospital overcrowding. Predicting these patients at admission allows for better resource planning, reducing bottlenecks, and improving flow.
View Article and Find Full Text PDFJ Orthop Surg Res
January 2025
Department of Human Anatomy, Graduate School, Inner Mongolia Medical University, Hohhot, 010010, Inner Mongolia, China.
Purpose: The study aimed to develop a deep learning model for rapid, automated measurement of full-spine X-rays in adolescents with Adolescent Idiopathic Scoliosis (AIS). A significant challenge in this field is the time-consuming nature of manual measurements and the inter-individual variability in these measurements. To address these challenges, we utilized RTMpose deep learning technology to automate the process.
View Article and Find Full Text PDFBMC Bioinformatics
January 2025
College of Artificial Intelligence, Nanjing Agricultural University, Weigang No.1, Nanjing, 210095, Jiangsu, China.
Antimicrobial peptides (AMPs) have been widely recognized as a promising solution to combat antimicrobial resistance of microorganisms due to the increasing abuse of antibiotics in medicine and agriculture around the globe. In this study, we propose UniAMP, a systematic prediction framework for discovering AMPs. We observe that feature vectors used in various existing studies constructed from peptide information, such as sequence, composition, and structure, can be augmented and even replaced by information inferred by deep learning models.
View Article and Find Full Text PDFCommun Biol
January 2025
Institute for Automation and Applied Informatics, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany.
Biomedical research increasingly relies on three-dimensional (3D) cell culture models and artificial-intelligence-based analysis can potentially facilitate a detailed and accurate feature extraction on a single-cell level. However, this requires for a precise segmentation of 3D cell datasets, which in turn demands high-quality ground truth for training. Manual annotation, the gold standard for ground truth data, is too time-consuming and thus not feasible for the generation of large 3D training datasets.
View Article and Find Full Text PDFNPJ Digit Med
January 2025
School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK.
The current approach to fetal anomaly screening is based on biometric measurements derived from individually selected ultrasound images. In this paper, we introduce a paradigm shift that attains human-level performance in biometric measurement by aggregating automatically extracted biometrics from every frame across an entire scan, with no need for operator intervention. We use a neural network to classify each frame of an ultrasound video recording.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!