Prolonged oxidative stress inverts the cardiac force-frequency relation: role of altered calcium handling and myofilament calcium responsiveness.

J Mol Cell Cardiol

Institute of Molecular Cardiology, Department of Medicine, University of Louisville Health Sciences Center, University of Louisville, ACB, 3rd Floor, 550 South Jackson Street, Louisville, KY 40202, USA.

Published: January 2006

The normally positive force- and Ca2+ -frequency responses (FFR and CaFR) are inverted in heart failure (HF); whether oxidative stress contributes to these abnormalities is unknown. We evaluated the impact of acute and prolonged oxidative stress on contraction and Ca2+ handling in adult rat cardiomyocytes. Acute (30 min) exposure to H2O2 (100 microM) induced a twofold increase (P<0.025) in intracellular oxyradicals together with contractile depression despite preservation of the Ca2+ transient and the FFR and CaFR to 3 Hz, indicating reduced myofilament Ca2+ responsiveness. In contrast, prolonged (24 h) exposure to the copper-zinc superoxide dismutase inhibitor diethyldithiocarbamic acid (DDC, 1 microM) similarly augmented oxyradicals but also increased cell size, and contraction and Ca2+ transient duration (P<0.025). DDC-treated myocytes displayed inverted FFRs and attenuated (though still positive) CaFRs as compared to control, indicating reduced myofilament Ca2+ responsiveness coupled with altered Ca2+ handling. Protein levels of the Na+ -Ca2+ exchanger (NCX), sarcoplasmic reticular (SR) Ca2+ ATPase (SERCA2), and serine-16 phosphorylated phospholamban (pSer16-PLB) were increased (P<0.025), whereas dihydropyridine receptor abundance was decreased. Total PLB and ryanodine receptor protein expression were unchanged. Caffeine-induced Ca2+ release showed increased NCX activity (P<0.025) without changes in total releasable SR Ca2+, suggesting compensatory changes in SERCA2 and pSer16-PLB to maintain SR Ca2+ load. The superoxide scavenger Tiron attenuated these effects. Thus, acute oxyradical exposure rapidly depresses myofibrillar Ca2+ responsiveness. Prolonged oxidative stress further induces alterations in Ca2+ handling that combined with extant reductions in myofibrillar responsiveness invert the FFR. With regard to Ca2+ handling, reduced transsarcolemmal Ca2+ flux rather than reduced SR Ca2+ uptake was the primary determinant of a negative FFR. Analogous changes may be operative in HF, a state characterized by both oxidative stress and Ca2+ dysregulation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.yjmcc.2005.09.013DOI Listing

Publication Analysis

Top Keywords

oxidative stress
12
prolonged oxidative
8
stress inverts
4
inverts cardiac
4
cardiac force-frequency
4
force-frequency relation
4
relation role
4
role altered
4
altered calcium
4
calcium handling
4

Similar Publications

T-2 toxin is a highly toxic fungal toxin that threatens humans and animals' health. As a major detoxifying and metabolic organ, the kidney is also a target of T-2 toxin. This article reviews T-2 toxin nephrotoxicity research progress, covering renal structure and function damage, nephrotoxicity mechanisms, and detoxification methods to future research directions.

View Article and Find Full Text PDF

Perfluorooctane sulfonic acid (PFOS) is an anthropogenic chemical found in aqueous film-forming foams (AFFFs) and many consumer products. Despite its environmental ubiquity and persistence, little is known about the effects of PFOS on stress levels in wild animals. Here, we examined PFOS bioaccumulation and correlations between PFOS exposure and oxidative stress in snapping turtles (Chelydra serpentina) downstream of Griffiss Air Force Base in Rome, New York, a known source of AFFF contamination.

View Article and Find Full Text PDF

Adipose-derived stem cells regulate mitochondrial dynamics to alleviate the aging of HFF-1 cells.

In Vitro Cell Dev Biol Anim

January 2025

Department of Outpatient Service, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, 421002, Hunan, China.

The objective of this study is to explore how adipose-derived stem cells (ASCs) regulate mitochondrial structure and function and the impact of this regulation on slowing cellular senescence. HFF-1 cells were induced by HO to establish a cellular senescence model, and ASCs or Mdivi-1 (mitochondrial fission inhibitor) was added. MTT examined the cell proliferation; flow cytometry detected mitochondrial membrane potential as well as apoptosis and cell cycle; kit measured ATP production; ELISA analyzed the levels of interleukin-6 (IL-6), interleukin 1 beta (IL-1β), tumor necrosis factor alpha-like (TNF-α), glutathione (GSH), malondialdehyde (MDA), and superoxide dismutase (SOD); Western blotting and qRT-PCR detected the expression of protein and mRNA levels; and β-galactosidase staining observed the degree of cellular senescence.

View Article and Find Full Text PDF

Alu-Sc-mediated exonization generated a mitochondrial LKB1 gene variant found only in higher order primates.

Sci Rep

January 2025

Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #04-06 Immunos, Singapore, 138648, Singapore.

The tumor suppressor LKB1/STK11 plays important roles in regulating cellular metabolism and stress responses and its mutations are associated with various cancers. We recently identified a novel exon 1b within intron 1 of human LKB1/STK11, which generates an alternatively spliced, mitochondria-targeting LKB1 isoform important for regulating mitochondrial oxidative stress. Here we examined the formation of this novel exon 1b and uncovered its relatively late emergence during evolution.

View Article and Find Full Text PDF

Understanding the molecular mechanisms that confer cold resistance in mammalian cells might be relevant for advancing medical applications. This study aimed to exploit the protective function of Late Embryogenesis Abundant (LEA) proteins, known to provide resistance to low temperatures in extremophiles and plants, by their exogenous expression in mammalian cells, and compare their effects with the well characterized antioxidant, vitamin E.Remarkably, the expression of LEA proteins in mammalian cells exerted cold-protective effect similar to Vitamin E.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!