Charge shift and triplet state formation in the 9-mesityl-10-methylacridinium cation.

J Am Chem Soc

Molecular Photonics Laboratory, School of Natural Science, University of Newcastle, Newcastle upon Tyne, NE1 7RU, United Kingdom.

Published: November 2005

The target donor-acceptor compound forms an acridinium-like, locally excited (LE) singlet state on illumination with blue or near-UV light. This LE state undergoes rapid charge transfer from the acridinium ion to the orthogonally sited mesityl group in polar solution. The resultant charge-transfer (CT) state fluoresces in modest yield and decays on the nanosecond time scale. The LE and CT states reside in thermal equilibrium at ambient temperature; decay of both states is weakly activated in fluid solution, but decay of the CT state is activationless in a glassy matrix. Analysis of the fluorescence spectrum allows precise location of the relevant energy levels. Intersystem crossing competes with radiative and nonradiative decay of the CT state such that an acridinium-like, locally excited triplet state is formed in both fluid solution and a glassy matrix. Phosphorescence spectra position the triplet energy well below that of the CT state. The triplet decays via first-order kinetics with a lifetime of ca. 30 micros at room temperature in the absence of oxygen but survives for ca. 5 ms in an ethanol glass at 77 K. The quantum yield for formation of the LE triplet state is 0.38 but increases by a factor of 2.3-fold in the presence of iodomethane. The triplet reacts with molecular oxygen to produce singlet molecular oxygen in high quantum yield. In sharp contradiction to a recent literature report, there is no spectroscopic evidence to indicate the presence of an unusually long-lived CT state.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja052967eDOI Listing

Publication Analysis

Top Keywords

triplet state
12
state
10
acridinium-like locally
8
locally excited
8
fluid solution
8
decay state
8
glassy matrix
8
quantum yield
8
molecular oxygen
8
triplet
6

Similar Publications

The tetragonal heavy-fermion superconductor CeRh_{2}As_{2} (T_{c}=0.3  K) exhibits an exceptionally high critical field of 14 T for B∥c. It undergoes a field-driven first-order phase transition between superconducting states, potentially transitioning from spin-singlet to spin-triplet superconductivity.

View Article and Find Full Text PDF

Algebraic Depletion Interactions in Two-Temperature Mixtures.

Phys Rev Lett

December 2024

Université de Mons, Laboratoire Interfaces & Fluides Complexes, 20 Place du Parc, B-7000 Mons, Belgium.

The phase separation that occurs in two-temperature mixtures, which are driven out of equilibrium at the local scale, has been thoroughly characterized, but much less is known about the depletion interactions that drive it. Using numerical simulations in dimension 2, we show that the depletion interactions extend beyond two particle diameters in dilute systems, as expected at equilibrium, and decay algebraically with an exponent -4. Solving for the N-particle distribution function in the stationary state, perturbatively in the interaction potential, we show that algebraic correlations with an exponent -2d arise from triplets of particles at different temperatures in spatial dimension d.

View Article and Find Full Text PDF

scHNTL: single-cell RNA-seq data clustering augmented by high-order neighbors and triplet loss.

Bioinformatics

January 2025

School of Computing and Artificial Intelligence, Southwest Jiaotong University, Sichuan 611756, China.

Motivation: The rapid development of single-cell RNA sequencing (scRNA-seq) has significantly advanced biomedical research. Clustering analysis, crucial for scRNA-seq data, faces challenges including data sparsity, high dimensionality, and variable gene expressions. Better low-dimensional embeddings for these complex data should maintain intrinsic information while making similar data close and dissimilar data distant.

View Article and Find Full Text PDF

Transient Triplet Metallopnictinidenes M-Pn (M = Pd, Pt; Pn = P, As, Sb): Characterization and Dimerization.

J Am Chem Soc

January 2025

Institut für Anorganische Chemie and International Center for Advanced Studies of Energy Conversion, Georg-August-Universität Göttingen, Tammannstr 4, 37077 Göttingen, Germany.

Nitrenes (R-N) have been subject to a large body of experimental and theoretical studies. The fundamental reactivity of this important class of transient intermediates has been attributed to their electronic structures, particularly the accessibility of triplet vs singlet states. In contrast, electronic structure trends along the heavier pnictinidene analogues (R-Pn; Pn = P-Bi) are much less systematically explored.

View Article and Find Full Text PDF

In Self-Consistent Field (SCF) calculations, the choice of initial guess plays a key role in determining the time-to-solution by influencing the number of iterations required for convergence. However, focusing solely on reducing iterations may overlook the computational cost associated with improving the accuracy of initial guesses. This study critically evaluates the effectiveness of two initial guess methods─basis set projection (BSP) and many-body expansion (MBE) on Hartree-Fock and hybrid Density Functional Theory (B3LYP and MN15) methods.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!