Stable phosphoinositide (PIP(n))-containing liposomes were prepared using polydiacetylene photochemistry. Tethered pentacosadiynyl inositol polyphosphate (InsP(n)) analogues of Ins(1,3,4)P(3), Ins(1,4,5)P(3), and Ins(1,3,4,5)P(4) were synthesized, incorporated into vesicles made up of diyne-phosphatidylcholine and -phosphatidylethanolamine, and polymerized by UV irradiation. The polymerized liposome nanoparticles showed markedly increased stability over conventional PIP(n)-containing vesicles as a result of the covalent conjugated ene-yne network in the acyl chains. The polymerized liposomes were specifically recognized by PIP(n) binding PH domains in liposome overlay assays and amplified luminescent proximity homogeneous assays. Moreover, the biotin moiety allowed attachment of the nanoparticles to a streptavidin-coated sensor chips in surface plasmon resonance (SPR) sensor. The PIP(n) headgroups displayed on SPR sensors showed higher affinities for PH domains and PIP(n) monoclonal antibodies than did monomeric PIP(n)-analogues with biotinylated acyl chains.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bc050197qDOI Listing

Publication Analysis

Top Keywords

polymerized liposomes
8
acyl chains
8
phosphoinositide-containing polymerized
4
liposomes stable
4
stable membrane-mimetic
4
membrane-mimetic vesicles
4
vesicles protein-lipid
4
protein-lipid binding
4
binding analysis
4
analysis stable
4

Similar Publications

Nomadic Nanomedicines: Medicines Enabled by the Paracrine Transfer Effect.

ACS Nano

January 2025

Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.

In nanomedicine, the cellular export of nanomaterials has been less explored than uptake. Traditionally viewed in a negative light, recent findings highlight the potential of nanomedicine export to enhance therapeutic effects. This Perspective examines key pathways for export and how nanomaterial design affects removal rates.

View Article and Find Full Text PDF

Antimicrobial resistance (AMR) is a major cause of death worldwide. This urges the search for alternatives to antibiotics, and antimicrobial polymers hold promise due to their reduced susceptibility to AMR. The topology of such macromolecules has a strong impact on their activity, with bottlebrush architectures outperforming their linear counterparts significantly.

View Article and Find Full Text PDF

Magnetic microscale polymeric nanocomposites in drug delivery: advances and challenges.

Drug Discov Today

December 2024

Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, 3200 South University Drive, Ft. Lauderdale, FL 33328-2018, USA. Electronic address:

Magnetic polymeric nanocomposites are a modern class of materials in which magnetic nanoparticles are embedded in a polymeric matrix. This combination of magnetic responsiveness and tuneable properties bestows versatility on this class of polymer nanocomposite material, which has potentially broad applications in drug delivery, imaging, environmental remediation and beyond. This review covers the uses of magnetic polymeric nanocomposites in drug delivery, discussing magnetic micelles, magnetic liposomes, magnetic hydrogels, magnetic sponges, magnetic mesoporous silica nanoparticles, magnetic microrobots, magnetic elastomers and magnetic scaffolds.

View Article and Find Full Text PDF

Nanotechnology in cancer therapy has significantly advanced treatment precision, effectiveness, and safety, improving patient outcomes and personalized care. Engineered smart nanoparticles and cell-based therapies are designed to target tumor cells, precisely sensing the tumor microenvironment (TME) and sparing normal cells. These nanoparticles enhance drug accumulation in tumors by solubilizing insoluble compounds or preventing their degradation, and they can also overcome therapy resistance and deliver multiple drugs simultaneously.

View Article and Find Full Text PDF

Anionic polysaccharides as delivery carriers for cancer therapy and theranostics: An overview of significance.

Int J Biol Macromol

December 2024

Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Turkiye; Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan 320315, Taiwan. Electronic address:

Recently, cancer therapy has witnessed remarkable advancements with a growing focus on precision medicine and targeted drug delivery strategies. The application of anionic polysaccharides has gained traction in various drug delivery systems. Anionic polysaccharides have emerged as promising delivery carriers in cancer therapy and theranostics, offering numerous advantages such as biocompatibility, low toxicity, and the ability to encapsulate and deliver therapeutic agents to tumor sites with high specificity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!