A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The beta 1a subunit is essential for the assembly of dihydropyridine-receptor arrays in skeletal muscle. | LitMetric

AI Article Synopsis

  • Homozygous zebrafish mutants (relaxed) exhibit paralysis and rapid mortality post-hatching, indicating a serious defect in skeletal muscle function.
  • The beta(1a) subunit of the dihydropyridine receptor (DHPR) has a mutation that results in the complete loss of its protein, while the alpha(1S) subunit remains structurally intact.
  • Although the alpha(1S) subunit correctly targets to triads, the absence of the beta(1a) subunit disrupts the proper arrangement of DHPR particles, leading to failures in muscle excitation-contraction coupling.

Article Abstract

Homozygous zebrafish of the mutant relaxed (red(ts25)) are paralyzed and die within days after hatching. A significant reduction of intramembrane charge movements and the lack of depolarization-induced but not caffeine-induced Ca(2+) transients suggested a defect in the skeletal muscle dihydropyridine receptor (DHPR). Sequencing of DHPR cDNAs indicated that the alpha(1S) subunit is normal, whereas the beta(1a) subunit harbors a single point mutation resulting in a premature stop. Quantitative RT-PCR revealed that the mutated gene is transcribed, but Western blot analysis and immunocytochemistry demonstrated the complete loss of the beta(1a) protein in mutant muscle. Thus, the immotile zebrafish relaxed is a beta(1a)-null mutant. Interestingly, immunocytochemistry showed correct triad targeting of the alpha(1S) subunit in the absence of beta(1a). Freeze-fracture analysis of the DHPR clusters in relaxed myotubes revealed an approximately 2-fold reduction in cluster size with a normal density of DHPR particles within the clusters. Most importantly, DHPR particles in the junctional membranes of the immotile zebrafish mutant relaxed entirely lacked the normal arrangement in arrays of tetrads. Thus, our data indicate that the lack of the beta(1a) subunit does not prevent triad targeting of the DHPR alpha(1S) subunit but precludes the skeletal muscle-specific arrangement of DHPR particles opposite the ryanodine receptor (RyR1). This defect properly explains the complete deficiency of skeletal muscle excitation-contraction coupling in beta(1)-null model organisms.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1288016PMC
http://dx.doi.org/10.1073/pnas.0508710102DOI Listing

Publication Analysis

Top Keywords

skeletal muscle
12
alpha1s subunit
12
dhpr particles
12
zebrafish mutant
8
mutant relaxed
8
beta1a subunit
8
immotile zebrafish
8
triad targeting
8
dhpr
7
subunit
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!