Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Caspases were recently implicated in the functional impairment of the nuclear pore complex during apoptosis, affecting its dual activity as nucleocytoplasmic transport channel and permeability barrier. Concurrently, electron microscopic data indicated that nuclear pore morphology is not overtly altered in apoptotic cells, raising the question of how caspases may deactivate nuclear pore function while leaving its overall structure largely intact. To clarify this issue we have analyzed the fate of all known nuclear pore proteins during apoptotic cell death. Our results show that only two of more than 20 nuclear pore core structure components, namely Nup93 and Nup96, are caspase targets. Both proteins are cleaved near their N terminus, disrupting the domains required for interaction with other nucleoporins actively involved in transport and providing the permeability barrier but dispensable for maintaining the nuclear pore scaffold. Caspase-mediated proteolysis of only few nuclear pore complex components may exemplify a general strategy of apoptotic cells to efficiently disable huge macromolecular machines.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M511717200 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!