The beta-carbon of the Pseudomonas aeruginosa 1244 pilin C-terminal Ser is a site of glycosylation. The present study was conducted to determine the pilin structures necessary for glycosylation. It was found that although Thr could be tolerated at the pilin C terminus, the blocking of the Ser carboxyl group with the addition of an Ala prevented glycosylation. Pilin from strain PA103 was not glycosylated by P. aeruginosa 1244, even when the C-terminal residue was converted to Ser. Substituting the disulfide loop region of strain PA103 pilin with that of strain 1244 allowed glycosylation to take place. Neither conversion of 1244 pilin disulfide loop Cys residues to Ala nor the deletion of segments of this structure prevented glycosylation. It was noted that the PA103 pilin disulfide loop environment was electronegative, whereas that of strain 1244 pilin had an overall positive charge. Insertion of a positive charge into the PA103 pilin disulfide loop of a mutant containing Ser at the C terminus allowed glycosylation to take place. Extending the "tail" region of the PA103 mutant pilin containing Ser at its terminus resulted in robust glycosylation. These results suggest that the terminal Ser is the major pilin glycosylation recognition feature and that this residue cannot be substituted at its carboxyl group. Although no other specific recognition features are present, the pilin surface must be compatible with the reaction apparatus for glycosylation to occur.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2248725 | PMC |
http://dx.doi.org/10.1074/jbc.M510975200 | DOI Listing |
J Am Chem Soc
September 2017
Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong SAR 999077, China.
Pseudaminic acid (Pse) is a nonulosonic acid unique to bacterial species, found as a component of important cell surface glycans and glycoproteins in various pathogenic species, such as the critical hospital threat Pseudomonas aeruginosa. Herein we present the development of a facile and scalable de novo synthesis of Pse and its functionalized derivatives from easily available Cbz-l-allo-threonine methyl ester (16 steps in 11% yield). The key reactions in our de novo synthesis involve the diastereoselective glycine thioester isonitrile-based aldol-type reaction to create the 1,3-anti-diamino skeleton, followed by the Fukuyama reduction and the indium-mediated Barbier-type allylation.
View Article and Find Full Text PDFMicrobiology (Reading)
September 2015
Department of Biological Sciences, Duquesne University, Pittsburgh, PA 15282, USA.
The group I pilin category is the most common type of type IVa pilus produced by Pseudomonas aeruginosa. The lateral surfaces of these pili are characterized by the presence of closely spaced, covalently attached O-antigen repeating units. The current work was conducted to investigate the pilin glycan's effect on pilus solubility and function.
View Article and Find Full Text PDFInfect Immun
April 2015
Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
Pseudomonas aeruginosa is a major bacterial pathogen commonly associated with chronic lung infections in cystic fibrosis (CF). Previously, we have demonstrated that the type IV pilus (Tfp) of P. aeruginosa mediates resistance to antibacterial effects of pulmonary surfactant protein A (SP-A).
View Article and Find Full Text PDFJ Bacteriol
November 2010
Department of Biological Sciences, Duquesne University, Pittsburgh, PA 15282, USA.
PilO is an oligosaccharyl transferase (OTase) that catalyzes the O-glycosylation of Pseudomonas aeruginosa 1244 pilin by adding a single O-antigen repeating unit to the β carbon of the C-terminal residue (a serine). While PilO has an absolute requirement for Ser/Thr at this position, it is unclear if this enzyme must recognize other pilin features. To test this, pilin constructs containing peptide extensions terminating with serine were tested for the ability to support glycosylation.
View Article and Find Full Text PDFClin Vaccine Immunol
April 2008
Department of Biological Sciences, Duquesne University, 600 Forbes Avenue, Pittsburgh, PA 15282, USA.
The O antigen is both a major structural outer membrane component and the dominant epitope of most gram-negative bacteria. Pseudomonas aeruginosa 1244 produces a type IV pilus and covalently links an O-antigen repeating unit to each pilin monomer. Here we show that immunization of mice with pure pilin from strain 1244 by use of either the mouse respiratory model or the thermal injury model resulted in protection from challenge with a pilus-null O-antigen-producing 1244 mutant.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!