The chemical compositions and emission rates of volcanic gases carry important information about underground magmatic and hydrothermal conditions, with application in eruption forecasting. Volcanic plumes are also studied because of their impacts upon the atmosphere, climate and human health. Remote sensing techniques are being increasingly used in this field because they provide real-time data and can be applied at safe distances from the target, even throughout violent eruptive episodes. However, notwithstanding the many scientific insights into volcanic behaviour already achieved with these approaches, technological limitations have placed firm restrictions upon the utility of the acquired data. For instance, volcanic SO(2) emission rate measurements are typically inaccurate (errors can be greater than 100%) and have poor time resolution (ca once per week). Volcanic gas geochemistry is currently being revolutionized by the recent implementation of a new generation of remote sensing tools, which are overcoming the above limitations and are providing degassing data of unprecedented quality. In this article, I review this field at this exciting point of transition, covering the techniques used and the insights thereby obtained, and I speculate upon the breakthroughs that are now tantalizingly close.

Download full-text PDF

Source
http://dx.doi.org/10.1098/rsta.2005.1668DOI Listing

Publication Analysis

Top Keywords

remote sensing
12
volcanic
5
volcano remote
4
sensing ground-based
4
ground-based spectroscopy
4
spectroscopy chemical
4
chemical compositions
4
compositions emission
4
emission rates
4
rates volcanic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!