A potential alternative to extracorporeal, noninvasive HIFU therapy is minimally invasive intense ultrasound ablation that can be performed laparoscopically or percutaneously. An approach to minimally invasive ablation of soft tissue using miniaturized linear ultrasound arrays is presented here. Recently developed 32-element arrays with aperture 2.3 x 49 mm, therapy frequency 3.1 MHz, pulse-echo bandwidths >42% and surface acoustic energy density >80 W/cm2, are described. These arrays are integrated into a probe assembly, including a coupling balloon and piercing tip, suitable for interstitial ablation. An integrated electronic control system allows therapy planning and automated treatment guided by real-time interstitial B-scan imaging. Image quality, challenging because of limited probe dimensions and channel count, is aided by signal processing techniques that improve image definition and contrast, resulting in image quality comparable to typical transabdominal ultrasound imaging. Ablation results from ex vivo and in vivo experiments on mammalian liver tissue show that this approach is capable of ablation rates and volumes relevant to clinical applications of soft tissue ablation such as treatment of liver cancer.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ultrasmedbio.2005.07.008DOI Listing

Publication Analysis

Top Keywords

ultrasound arrays
8
interstitial ablation
8
minimally invasive
8
soft tissue
8
image quality
8
ablation
7
miniaturized ultrasound
4
arrays
4
arrays interstitial
4
ablation imaging
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!