Ultrasound image segmentation using spectral clustering.

Ultrasound Med Biol

Harvard Medical School, Brigham and Women's Hospital, Boston, MA 02115, USA.

Published: November 2005

Segmentation of ultrasound images is necessary in a variety of clinical applications, but the development of automatic techniques is still an open problem. Spectral clustering techniques have recently become popular for data and image analysis. In particular, image segmentation has been proposed via the normalized cut (NCut) criterion. This article describes an initial investigation to determine the suitability of such segmentation techniques for ultrasound images. The adaptation of the NCut technique to ultrasound is described first. Segmentation is then performed on simulated ultrasound images. Tests are also performed on abdominal and fetal images with the segmentation results compared to manual segmentation. The success of the segmentation on these test cases warrants further research into NCut-based segmentation of ultrasound images.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ultrasmedbio.2005.07.005DOI Listing

Publication Analysis

Top Keywords

ultrasound images
16
segmentation
9
image segmentation
8
spectral clustering
8
segmentation ultrasound
8
ultrasound
6
images
5
ultrasound image
4
segmentation spectral
4
clustering segmentation
4

Similar Publications

Systematic Review of Hybrid Vision Transformer Architectures for Radiological Image Analysis.

J Imaging Inform Med

January 2025

School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ, USA.

Vision transformer (ViT)and convolutional neural networks (CNNs) each possess distinct strengths in medical imaging: ViT excels in capturing long-range dependencies through self-attention, while CNNs are adept at extracting local features via spatial convolution filters. While ViT may struggle with capturing detailed local spatial information, critical for tasks like anomaly detection in medical imaging, shallow CNNs often fail to effectively abstract global context. This study aims to explore and evaluate hybrid architectures that integrate ViT and CNN to leverage their complementary strengths for enhanced performance in medical vision tasks, such as segmentation, classification, reconstruction, and prediction.

View Article and Find Full Text PDF

Rib pathology is uniquely difficult and time-consuming for radiologists to diagnose. AI can reduce radiologist workload and serve as a tool to improve accurate diagnosis. To date, no reviews have been performed synthesizing identification of rib fracture data on AI and its diagnostic performance on X-ray and CT scans of rib fractures and its comparison to physicians.

View Article and Find Full Text PDF

Rising computed tomography (CT) workloads require more efficient image interpretation methods. Digitally reconstructed radiographs (DRRs), generated from CT data, may enhance workflow efficiency by enabling faster radiological assessments. Various techniques exist for generating DRRs.

View Article and Find Full Text PDF

Integration of artificial intelligence (AI) into radiology practice can create opportunities to improve diagnostic accuracy, workflow efficiency, and patient outcomes. Integration demands the ability to seamlessly incorporate AI-derived measurements into radiology reports. Common data elements (CDEs) define standardized, interoperable units of information.

View Article and Find Full Text PDF

Purpose: The study explores the role of multimodal imaging techniques, such as [F]F-PSMA-1007 PET/CT and multiparametric MRI (mpMRI), in predicting the ISUP (International Society of Urological Pathology) grading of prostate cancer. The goal is to enhance diagnostic accuracy and improve clinical decision-making by integrating these advanced imaging modalities with clinical variables. In particular, the study investigates the application of few-shot learning to address the challenge of limited data in prostate cancer imaging, which is often a common issue in medical research.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!