Kinetic and structural characterization of phosphofructokinase from Lactobacillus bulgaricus.

Biochemistry

Department of Biochemistry and Biophysics, Texas A&M University, and the Texas Agricultural Experiment Station, College Station, Texas 77843-2128, USA.

Published: November 2005

Phosphofructokinase from Lactobacillus delbrueckii subspecies bulgaricus (LbPFK) has been reported to be a nonallosteric analogue of phosphofructokinase from Escherichia coli at pH 8.2 [Le Bras et al. (1991) Eur. J. Biochem. 198, 683-687]. A reexamination of the kinetics of this enzyme shows LbPFK to have limited binding affinity toward the allosteric ligands, MgADP and PEP, with dissociation constants of approximately 20 mM for both. Their allosteric effects are observed only at high concentrations of these ligands, with both exhibiting inhibitory effects on substrate binding. No pH dependence was observed for the binding and the influence of MgADP and PEP on the enzyme. To attempt to explain these results, the crystal structure of LbPFK was solved using molecular replacement to 1.86 A resolution. A comparative study of the LbPFK structure with that of phosphofructokinases from E. coli (EcPFK) and Bacillus stearothermophilus (BsPFK) reveals a structure with conserved fold and substrate binding site. The effector binding site, however, shows many differences that could explain the observed decreases in binding affinity for MgADP and PEP in LbPFK as compared to the other two enzymes.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bi051283gDOI Listing

Publication Analysis

Top Keywords

mgadp pep
12
phosphofructokinase lactobacillus
8
binding affinity
8
substrate binding
8
binding site
8
binding
6
lbpfk
5
kinetic structural
4
structural characterization
4
characterization phosphofructokinase
4

Similar Publications

Glucose Regulation of β-Cell KATP Channels: Is a New Model Needed?

Diabetes

June 2024

University of Washington Medicine Diabetes Institute, University of Washington, Seattle, WA.

The canonical model of glucose-induced increase in insulin secretion involves the metabolism of glucose via glycolysis and the citrate cycle, resulting in increased ATP synthesis by the respiratory chain and the closure of ATP-sensitive K+ (KATP) channels. The resulting plasma membrane depolarization, followed by Ca2+ influx through L-type Ca2+ channels, then induces insulin granule fusion. Merrins and colleagues have recently proposed an alternative model whereby KATP channels are controlled by pyruvate kinase, using glycolytic and mitochondrial phosphoenolpyruvate (PEP) to generate microdomains of high ATP/ADP immediately adjacent to KATP channels.

View Article and Find Full Text PDF

Creatine kinase (CK) and adenylate kinase (AK) are energy transfer systems. Different studies on permeabilized cardiomyocytes suggest that ADP-channelling from mitochondrial CK alone stimulates respiration to its maximum, VO2_max, in rat but not mouse cardiomyocytes. Results are ambiguous on ADP-channelling from AK to mitochondria.

View Article and Find Full Text PDF

Pancreatic beta cells secrete insulin in response to plasma glucose. The ATP-sensitive potassium channel (K ) links glucose metabolism to islet electrical activity in these cells by responding to increased cytosolic [ATP]/[ADP]. It was recently proposed that pyruvate kinase (PK) in close proximity to beta cell K locally produces the ATP that inhibits K activity.

View Article and Find Full Text PDF

Stylo (Stylosanthes guianensis) is a tropical legume known for its exceptional tolerance to low phosphate (Pi), a trait believed to be linked to its high acid phosphatase (APase) activity. Previous studies have observed genotypic variations in APase activity in stylo; however, the gene encoding the crucial APase responsible for this variation remains unidentified. In this study, transcriptomic and proteomic analyses were employed to identify eight Pi starvation-inducible (PSI) APases belonging to the purple APase (PAP) family in the roots of stylo and seven in the leaves.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!