AI Article Synopsis

  • * The study compared brain responses and behavioral performance of dyslectic and skilled readers during tasks involving different speech cues.
  • * Results indicated that dyslectic readers had slower reaction times and altered brain responses, suggesting they have a deficit in processing natural speech that could contribute to their reading difficulties.

Article Abstract

Children with dyslexia have difficulties with phonological processing. It is assumed that deficits in auditory temporal processing underlie the phonological difficulties of dyslectic subjects (i.e. the processing of rapid acoustic changes that occur in speech). In this study we assessed behavioral and electrophysiological evoked brain responses of dyslectic and skilled reading children while performing a set of hierarchically structured auditory tasks. Stimuli consisted of auditory natural unmodified speech that was controlled for the parameter of changing rate of main acoustic cues: vowels (slowly changing speech cues: /i/ versus /u/) and consonant-vowel (CV) syllables (rapidly changing speech cues: /da/ versus /ga/). Brain auditory processing differed significantly between groups: reaction time of dyslectic readers was prolonged in identifying speech stimuli and increased with increased phonological demand. Latencies of auditory evoked responses (auditory event related potentials [AERPs]) recorded during syllable identification of the dyslectic group were prolonged relative to those of skilled readers. Moreover, N1 amplitudes during vowel processing were larger for the dyslectic children and P3 amplitudes during CV processing were smaller for the dyslectic children. From the results of this study it is evident that the latency and amplitude of AERPs are sensitive measures of the complexity of phonological processing in skilled and dyslectic readers. These results may be signs of deficient auditory processing of natural speech under normal listening conditions as a contributing factor to reading difficulties in dyslexia. Detecting a dysfunction in the central auditory processing pathway might lead to early detection of children who may benefit from phonetic-acoustic training methods.

Download full-text PDF

Source
http://dx.doi.org/10.1515/jbcpp.2005.16.2-3.157DOI Listing

Publication Analysis

Top Keywords

auditory processing
16
processing
11
auditory
9
children dyslexia
8
natural speech
8
phonological processing
8
changing speech
8
speech cues
8
dyslectic readers
8
dyslectic children
8

Similar Publications

Biological relevance and methodological implications of unexpected hearing thresholds in a diving bird.

Sci Rep

December 2024

Deutsches Meeresmuseum, Katharinenberg 14 - 20, 18439, Stralsund, Germany.

Many animals alternate between different media, such as air and water, thanks to specific adaptations. Among birds, penguins (Sphenisciformes) have the most extreme morphological, physiological, and behavioural adaptations to their amphibious lifestyle. Their auditory perception of sound, potentially matching different impedances in air and under water, is largely unknown particularly in terms of whether their underwater adaptations may have affected their in-air hearing capacity.

View Article and Find Full Text PDF

Auditory rhythm encoding during the last trimester of human gestation: From tracking the basic beat to tracking hierarchical nested temporal structures.

J Neurosci

December 2024

Inserm UMR1105, Groupe de Recherches sur l'Analyse Multimodale de la Fonction Cérébrale, CURS, Avenue Laennec, 80036 Amiens Cedex, France

Rhythm perception and synchronization to periodicity hold fundamental neurodevelopmental importance for language acquisition, musical behavior, and social communication. Rhythm is omnipresent in the fetal auditory world and newborns demonstrate sensitivity to auditory rhythmic cues. During the last trimester of gestation, the brain begins to respond to auditory stimulation and to code the auditory environment.

View Article and Find Full Text PDF

Speech production and perception involve complex neural dynamics in the human brain. Using magnetoencephalography, our study explores the interaction between cortico-cortical and cortico-subcortical connectivities during these processes. Our connectivity findings during speaking revealed a significant connection from the right cerebellum to the left temporal areas in low frequencies, which displayed an opposite trend in high frequencies.

View Article and Find Full Text PDF

Objective: This study assessed the relevance of auditory brainstem response (ABR) thresholds in evaluating cochlear implantation (CI) candidacy by studying their correlation with functional hearing in patients with sensorineural hearing loss (SNHL).

Design And Study Sample: In this retrospective study, we examined correlations between ABR thresholds, speech perception scores in quiet and pure-tone audiometry in 191 adults. We compared these correlations between individuals with different degrees of SNHL to discern differences in potential CI candidates and individual with less severe SNHL.

View Article and Find Full Text PDF

Unlabelled: Auditory masking-the interference of the encoding and processing of an acoustic stimulus imposed by one or more competing stimuli-is nearly omnipresent in daily life, and presents a critical barrier to many listeners, including people with hearing loss, users of hearing aids and cochlear implants, and people with auditory processing disorders. The perceptual aspects of masking have been actively studied for several decades, and particular emphasis has been placed on masking of speech by other speech sounds. The neural effects of such masking, especially at the subcortical level, have been much less studied, in large part due to the technical limitations of making such measurements.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: